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ABSTRACT
As high-performance computing (HPC) resources continue to grow
in size and complexity, so too does the volume and velocity of the
operational data that is associated with them. At such scales, new
mechanisms and technologies are required to continuously gather,
store, and analyze this data in near-real time from heterogeneous
and distributed sources without impacting the underlying data
center operations or HPC resource utilization. In this paper, we
describe our experiences in designing and implementing an infras-
tructure for extreme-scale operational data collection, known as
the Operations Monitoring and Notification Infrastructure (OMNI)
at the National Energy Research Scientific Computing (NERSC)
center at Lawrence Berkeley National Laboratory. OMNI currently
holds over 522 billion records of online operational data (totaling
over 125TB) and can ingest new data points at an average rate of
25,000 data points per second. Using OMNI as a central repository,
facilities and environmental data can be seamlessly integrated and
correlated with machine metrics, job scheduler information, net-
work errors, and more, providing a holistic view of data center
operations. To demonstrate the value of real-time operational data
collection, we present a number of real-world case studies for which
having OMNI data readily available led to key operational insights
at NERSC. The case results include a reduction in the downtime of
an HPC system during a facility transition, as well as a $2.5 million
electrical substation savings for the next-generation Perlmutter
HPC system.

CCS CONCEPTS
• Applied computing → Enterprise data management; Data
centers; • Mathematics of computing → Time series analy-
sis; Exploratory data analysis; •Hardware→ Power and energy;
Enterprise level and data centers power issues; • Information sys-
tems → Business intelligence; Data analytics.
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1 INTRODUCTION
High-performance computing (HPC) systems that support a range
of large-scale scientific applications are continuing to grow in size
and complexity on the path to exascale. Operating these machines
requires a data center capable of meeting the power, space, infras-
tructure, and cooling requirements that they demand. Given the
complexity and scale of these systems, a number of unique chal-
lenges exist in managing HPC data centers, such as high power
usage with large fluctuations, providing high-availability and high
utilization for users over long-running jobs despite failures, and
extensive cooling requirements involving both air and water.

Achieving operational efficiency in this type of environment
requires gathering information from all the systems and sources
that support the HPC data center, analyzing it, and responding to
near-real time events when necessary. However, the nature of this
data is heterogeneous, coming from diverse sources located across
the machine, data center, or external to the facility and in different
formats. The scale of resources in an HPC data center also means
that the amount of data that must be collected is proportionally
large. Further, the datasets are time-variant due to their rates of
collection, resolution, indexing, and availability. Some may occur
at micro or nano-second intervals while others can be in seconds,
minutes, or more. Some of the streaming data needs to be captured
and exposed to operations staff in near-real time for correlation. In
addition, archived operational data can continue to be useful for
data scientists and researchers in identifying historical trends that
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may help inform decisions about energy efficiency, future procure-
ments, proactive maintenance, or building models for predictive
machine learning applications.

Providing the means to ingest and expose this data requires an
integrated operational data collection and analytics infrastructure
capable of overcoming these challenges while minimizing the im-
pact on the systems themselves and meeting the operational goals
of that facility or organization. This paper provides the experiences
and lessons learned in creating the Operations Monitoring and
Notification Infrastructure (OMNI) for this purpose at the National
Energy Research Scientific Computing Center (NERSC), located at
Lawrence Berkeley National Laboratory (LBNL, hereafter referred
to as Berkeley Lab) in Berkeley, California. OMNI ingests stream-
ing time series data from a variety of sources including the HPC
systems at NERSC, other supporting computational infrastructure,
environmental sensors, mechanical systems, and more in near-real
time. OMNI is built using open-source technologies, such as the
Elastic Stack, and currently contains over two years of online op-
erational data, totaling 550 billion records (125 TB of data). The
rest of this paper is structured as follows. Section 2 discusses the
operational details of the NERSC data center and the building. The
design rationale and implementation details for integrating com-
pute metrics and data with facilities information in the data center
are presented in Section 3. Section 4 provides scenarios of insights
gained thus far from OMNI data analysis and Section 5 discusses
the lessons learned in creating and implementing OMNI. Section 6
provides future directions for OMNI and a brief conclusion.

2 BACKGROUND
NERSC is the mission scientific computational facility for the Office
of Science in the U.S. Department of Energy (DOE) and has operated
many high-performance computing systems since its inception at
Lawrence Livermore National Laboratory in 1974. Sixteen NERSC
systems have appeared on the Top500 [1] list of fastest computing
systems in the world. NERSC’s mission is to provide HPC and
compute resources to science users at high-availability with high-
utilization of the machines in order to further the scientific research
supported by the DOE office of Science.

The current NERSC HPC data center is located at Shyh Wang
Hall. The building is a 140,000 gross-square-foot (GSF) facility that
houses both the data center as well as office spaces for Berkeley
Lab Computing Sciences division employees spanning NERSC, the
Energy Sciences network (ESnet), and the Computational Research
Division (CRD). It is comprised of 4 floors – 2 office floors (28,000
square feet each), 1 machine room floor (20,000 square feet with
room to expand up to 28,000 square feet), and 1 mechanical level. It
is outfitted with a seismic sub-floor and is a LEED®-certified Gold
facility, averaging a monthly Level 2 Power Usage Effectiveness
(PUE) [5, 6] ratio of 1.07 over the past year. A Level 2 PUE is defined
to be measured from the power distribution unit (PDU) outputs in
terms of equipment, utility inputs in terms of facility, and collected
at an interval of hourly and daily.

NERSC currently supports two high-performance systems in the
Shyh Wang Hall data center. The first, Edison, is a Cray XC30 sys-
tem with a peak performance of 2.57 petaflops per second, 134,064
compute cores, 357 terabytes of memory, and 7.56 petabytes of

disk1. The second is Cori, a Cray XC40 machine, equipped with
2,388 Intel Xeon “Haswell” processor nodes (32 cores each), 9,688
Intel Xeon Phi “Knight’s Landing” (KNL) nodes (68 cores each), and
a large all-flash burst buffer.

To support these systems, Shyh Wang Hall has an available
power capacity of 12.5 megawatts.2 The maximum possible power
capacity for the building, with upgrades, is 42 megawatts. Together,
the systems draw an average monthly energy usage of 4.8 × 106
kilowatt-hours. The incoming power to the facility is currently ser-
viced by five external electrical substations. One of the substations
handles the mechanical load from facilities, such as air handling
units and chilled water, and each of the other units is dedicated
to specific systems. The HPC systems are assigned one or more
dedicated electrical substations. Other common infrastructure, such
as web servers, data transfer, OMNI, cybersecurity, etc. draws from
its own substation. Because of this provisioning, the substations
sometimes have unused, or stranded, capacity. In addition, stranded
capacity can also result from energy efficiency requirements that
mandate separation of loads for metering purposes and matters
related to transformer provisioning.

To maintain energy efficiency and reduce environmental impact,
the facility leverages the temperate Berkeley, California climate to
cool the data center. The facility does not have traditional chillers
(i.e., “air conditioning units”) and instead uses a combination of
cooled water and evaporative cooling to maintain the data center
environment. Air that has been circulated through the data center
is mixed with the outside air in order to temper and dehumidify it,
as well as to warm the office floors. When additional cooling and
dehumidifying is required, cooled water is used to bring down the
air temperature prior to it entering the evaporative unit.

In addition to its use in the air handling units, cooled water is
also used by the high-performance computing systems to moderate
temperature. Water circulates through cooling towers, where it is
cooled by evaporation. This outside, open water loop is connected
by a heat exchanger to a closed, inside water loop that provides cool
water directly to the systems. The water loop additionally provides
cooling for air on hot days.

3 OMNI INTEGRATED OPERATIONAL DATA
COLLECTION AND ANALYTICS

This section describes the design and implementation of OMNI, an
integrated operational data collection and analytics infrastructure
that gathers data from a variety of operational and facilities sources
across a data center.

3.1 Design
Operational data, especially at the scale of HPC data centers, is
large, heterogeneous, and distributed. Time is also an important
characteristic of operational data, as changes in the compute en-
vironment can occur at nano- and micro-second scales. Examples
of operational data include time series data from the environment
(e.g., temperature, power, humidity levels, and particle levels), mon-
itoring data (e.g., network speeds, latency, packet loss, utilization

1Edison will be retired on May 13, 2019
2The Center is in the process of being upgraded to 25MW for the upcoming Perlmutter
system.
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or those that monitor the filesystem for disk write speeds, I/O, CRC
errors), and event data (e.g., system logs, console logs, hardware
failure events, power events essentially anything that has a start
and end time). The reporting rate of this data often depends on
several factors including individual properties of the sensor or ma-
chine, the size of the data, whether or not continuous monitoring is
necessary, and how quickly it is needed for analysis. Some systems
do not report data by default and must be instrumented by system
administrators.

Given the complex nature of the data, creating a system for
collecting it in a production environment is challenging. Based on
the data properties and the sources from which it can be collected,
the OMNI team identified the core system requirements, as follows:

Scalability. One of the primary concerns with building a data infras-
tructure for operations and monitoring is the volume of data that is
being collected and the need to provide near-real time insights into
the systems and sensor data. This is especially true for HPC data
centers, where there are thousands of nodes and millions of metrics
to be reported to determine the health of systems and facility. In
addition, it is critical to minimize the overhead created by sending
operational data from multiple sources across the network on any
of the data center operations. Thus, designing a data collection in-
frastructure capable of ingesting new data sources and dynamically
scaling to meet the needs of emerging exascale infrastructures is of
utmost importance.

High-Availability. Most data centers operate in a 24x7 environment
and consequently, their operational data is a continuous monitor-
ing process. The data collection infrastructure is a critical part of
operations & monitoring that must be available at all times, even in
the presence of other faults or issues at the data center. The design
should implement technologies that provide high availability (HA).

Maintainability. Software and hardware evolves and changes over
time. The system maintainers must be able to apply rolling patches,
upgrades, warm hardware swaps, etc. to parts of the systemwithout
affecting the flow of data from the various sources.

Usability. Exposing the data to be utilized by a variety of stakehold-
ers (e.g., site-reliability engineers, consultants, system administra-
tors, researchers) is equally as important as collecting it. Policies
for anonymizing data and controlling access to it are important.
Providing tools to access the data furthers the possibilities of what
can be gained from the data that is collected. The system must
provide fast and easy access to the data that it collects for analytics,
visualization, and monitoring purposes.

Lifetime Data Retention Policy. Traditional research has focused
on minimizing data collection by only collecting data when there
is a problem or open research question. However, there are times
when a bug or an issue is identified later in time, where historical
operational data would be a valuable tool for providing insights. In
addition, machine learning models can be trained with historical
data. The nature of operations means that virtually anything can
happen. The system must collect the data with the goal of stor-
ing and saving it forever, thereby providing an asset that can be
consulted when new questions arise and a source for statistical
modeling and failure prediction.

3.2 Implementation Details
The OMNI cluster is independent of any system in the facility; it is
the first system to become available after the power is turned on
and the last system to be taken down before the power is turned off.
As long as there is power to the facility, OMNI stays on to collect
data.

OMNI is implemented using open source software, on-premise
hardware, and virtualization technologies. The decision to use open
source software avoids vendor lock-in and reduces the cost of the
data collection infrastructure for the center. The use of virtual
machines and containers in OMNI enables more efficient use of
the underlying hardware, facilitates on-demand application provi-
sioning, lowers the cost of hardware maintenance, and allows for
high-availability configurations. Accordingly, the use of virtualiza-
tion for operational data collection leads to lower overall power
consumption and cooling requirements, compared to using a bare
metal solution alone.

The specific software and technologies used by OMNI were se-
lected based on their abilities to meet the design requirements
set forth in Section 3.1. Virtualization is configured and managed
using oVirt [10] and Rancher [12]. Data ingestion and storage in
near-realtime is enabled via the Elastic Stack [2], an open source dis-
tributed search and analytics software stack comprised of different
components for ingesting, querying, and visualizing data. The cen-
tral component of the stack is Elasticsearch [3], a distributed JSON-
based RESTful search engine that enables the ingestion and search-
ing of massive amounts of data in near real-time. The Logstash [9]
component handles server-side data processing pipelines, i.e., pars-
ing streaming machine log information for pertinent values and
forwarding them to Elasticsearch for ingestion. The Kibana [8]
component provides a web interface for data discovery, analysis,
and visualization of Elasticsearch data, as well as monitoring infor-
mation and management controls for the Elastic Stack. Additional
stack components are available but are not used in the OMNI sys-
tem. The Elastic Stack is free to use but certain features of it, such
as X-Pack security and cross-cluster search, are enabled via license.
Since cost and impact to normal NERSC operations is an important
consideration in this implementation, OMNI utilizes only the free
version.

Figure 1 shows the OMNI data collection architecture and its
diverse data sources. The data sources from the NERSC data center
include external systems and sensors, such as meters at the elec-
trical substations, information from the water tower that supplies
the building’s water, and weather and atmospheric data about the
air and surrounding Berkeley climate. From the facilities perspec-
tive, sensors and metrics inside the data center include building
management systems (BACnet, Modbus), i.e., cooled water, air han-
dling units, particle counters, temperatures from rack doors, and
earthquake sensors, as well as power readings at the breaker pan-
els, power distribution units (PDUs), and Uninterruptible Power
Supplies (UPSs). The infrastructure has approximately 6200 sensors.

Metrics from the high-performance computing systems include
Cray Power Management Database (PMDB) and System Environ-
ment Data Collections (SEDC) data, job information from the Slurm
job scheduler, Lustre parallel file system data, and information from
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Figure 1: OMNI Integrated Operational Data Collec-
tion and Analytics Architecture. For a clearer view,
go to https://www.nersc.gov/news-publications/staff-
blogs/otg/omni-news/

the Aries high-speed network. For Cori, there is additional infor-
mation available for the burst buffer. Other network information
from the data center and the Energy Sciences Network (ESnet),
DOE’s dedicated science network is captured via sFlow, SNMP, and
InfiniBand data. In addition, OMNI also captures syslog informa-
tion. All data collected is time synced to a local stratum, a network
time protocol (NTP) server. The data streams themselves are not
synchronized to each other.

Getting data from the various systems and sensors into Elastic-
search occurs via RabbitMQ [11]. RabbitMQ is a messaging broker
that supports multiple messaging protocols and queuing. It can be
set up as a high-availability message queue and is capable of writing
a data stream’s subset of data and directing it elsewhere or to be re-
indexed (this is especially helpful in smoothing out the burstiness
of the data collection process). Data from external sources may be
queued directly into RabbitMQ if the format is appropriate or may
be first collected from a system via collectd, parsed by Logstash,
and then queued into RabbitMQ. collectd is used to minimize the
impact of the data collection process on the underlying system.
In addition, using collectd, collection rates and plugins can be
configured independently for different sources. Although there are
other messaging brokers such as Kafka [7], at the time of OMNI’s
design, the API was going through an update so frequently that it
wasn’t stable enough for our needs.

To ingest data into Elasticsearch, JSON data is sent from the Rab-
bitMQ cluster to Logstash. As the local aggregation point, Logstash
reduces the number of network connections that the central logging
clusters need to manage. The system’s local server takes the local
connections and forwards a single connection to the center logger.
It also provides the encryption point so non-encrypted data is only
present on the local system or within the local system where the
data may be protected by other methods. Logstash also offers the
ability to bridge between networks. For example a private network
and a logging network. Lastly, Logstash can be used to convert
collectd UDP packets to TCP, as a means of preventing dropped

packets and lost data. Using RabbitMQ, Logstash, and Elasticsearch,
OMNI is able to ingest over 25,000 messages per second from het-
erogeneous and distributed sources in and out of the data center.
While the amount of 25,000 messages per second seem to be lim-
iting given today’s high resolution data sources, at the time that
OMNI was configured, (March 2015) the technology behind meter-
ing used a limited data rate as a compromise between data rates, the
volume of data and the number of sources. The meters producing
the data also had rate limits with serial based meters. As long as
this metering is in place, this collection rate is sufficient. Now that
there are faster and more high resolution data rates, we plan to in-
tegrate Victoria Metrics [13], which has a potential of collecting up
to 300,000 messages per second, with Elasticsearch. The metering
for the Perlmutter system and thereafter, will be using the current
technologies.

Once ingested, Elasticsearch indexes the data for near real-time
retrieval and querying. Data may be directly queried from Elastic-
search using the native RESTful APIs or using visualization and
data discovery tools, such as Kibana or Grafana [4]. Both tools are
web-based and allow for intelligent data delivery to the browser via
JSON data structures. They are also specifically designed for visual-
izing and analyzing extremely large time series datasets. Visualiza-
tions may be gathered onto dashboards for providing monitoring
information across the data center.

We have chosen technologies and a policy structure that pro-
vides high availability. For example, RabbitMQ clustering provides
mirrored queues across multiple nodes. When data is sent to a
master node, the information is propagated across to the mirrors
and involves enqueueing publishes, delivering messages to users
or tracking acknowledgements. Elasticsearch clustering, by being
distributed in nature and uses virtual machines, provides high avail-
ability and scalability and able add more nodes to the cluster to
spread the load and provide reliability between them. Storage poli-
cies for data have multiple tiers like hot and cold storage depending
on the age of the data.

In terms of cybersecurity, OMNI systems that have interfaces to
receive data from the various NERSC networks are private or are
firewalled from external networks. As a general policy in the facility,
we do not allow any direct routing between networks. We are able
to do this because NERSC supports its own network infrastructure
within the facility, having our own subnets, separate from all others
at the Lab and have a direct connection to ESnet.

4 RESULTS
The initial motivation for collecting operational data was due to a
requirement to submit monthly metrics to DOE that help quantify
how well the center aligns with its mission of delivering high-
availability and reliability to science users. On an operational basis,
these datasets allow staff to identify potential problems faster, more
effectively diagnose the root causes of issues, and resolve incidents
more quickly. Using visualization dashboards for near-real time
monitoring, the data is used daily by NERSC staff to determine if
the system is being utilized efficiently, if the types of jobs requested
are meeting the DOE’s mission, if there is a bottleneck in storage
requests that is impacting job scheduling, and whether or not there
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are network latencies impacting data transfers, among other use
cases.

As more diverse data is accumulated over longer periods of time,
the ability to ask more complex and specialized questions becomes
possible. Some examples of these types of questions include:

• How efficient are the cooling towers during certain types
of atmospheric conditions (i.e., high temperatures with low
humidity, high temperatures with high humidity, etc)?

• How does the outside air quality impact the data center
ecosystem?

• Are there software bug patterns that can be discerned over
an eight-month period and not a three-month period?

Data from OMNI helps provide the team with a holistic view
of the HPC data center and the environmental information that
contributes to the center’s overall status. When problems occur,
NERSC staff is in a position to treat the symptoms but also to be
able to determine the root cause or see the “big picture.” Before a
problem occurs, staff is able to see when something is not behaving
as expected and can take proactive steps to mitigate risks.

The following sections discuss a number of results that were
achieved using operational data analytics. These analyses provided
NERSC with results that supported the business decision to collect
and analyze operational data in the scenarios described.

4.1 Incorrect Voltage Issues after Data Center
Relocation

In December 2015, the NERSC HPC data center geographically re-
located from its Oakland, California location to a new facility, Shyh
Wang Hall, in Berkeley, California. As part of the business strat-
egy to continuously provide computational resources to scientific
users during the transition, one HPC system, Hopper, continued
to be available in Oakland, while a new system, Cori Phase I, was
delivered to Berkeley and made immediately available to users. The
third system, Edison, was migrated from Oakland to Berkeley.

Following the migration, in January 2016, a large job that used a
significant portion of Edison’s HPC resources finished in the job
scheduling queue. Because the job was so large and cleaning up its
resources takes some time, the system began to idle and multiple
cabinets unexpectedly powered off without warning. Due to the
high-availability of the OMNI cluster, NERSC engineers were able
to turn to the OMNI datasets for insights about the facility power,
substation power, job scheduling data from slurm, and system met-
rics despite the fact that these cabinets lost power. A cursory data
analysis showed that the cause of this incident was that the cabinets
had received an over-voltage event.

By back-tracing the power source from the cabinets through to
the main breakers where it enters the building, it was discovered
that the facility’s substations were delivering an incoming voltage
of 12 kilo-Volts, which was approximately 10% above the expected
value. Further investigation uncovered that the building designers
had used normal specifications rather than that of a data center
in their designs and failed to account for the large-scale power
fluctuations that can occur in HPC systems.

During the period after a large-scale job has finished, when the
Edison system is idling, the power requirements of the system

would change downward. This change caused the substation pow-
ering Edison to provide voltages to the cabinets with idling nodes
that were too high. Therefore, as part of the system’s power supply
self-protect mode, the cabinet power supplies shut down. Until the
substation’s output was shunted, large jobs could not be run on
Edison. A shunt is used to control the high-voltage that can occur
when there is a sudden loss of power demand.

Figure 2: Edison Dashboard Panel Substation 628a3a - Pqube
Statistics

Figure 2 is a dashboard of real-time power quality monitoring
measured in four different areas of the facility. Column 1 is power
coming from the substation, Column 2 is power from a specific
panel to a common point in the facility, Column 3 is power from
the panel to a specific point, like Edison, and Column 4 is the
corrected power. Because this is in real time, it allows us to watch
for anomalies like high voltage spikes.

Figure 3: Edison C1-18 PDU Strips (units omitted)

In Figure 3, the graph is the house power to Edison, the blue
line corresponding to C1-18. The line drops significantly during
the point where nodes idled. As Edison nodes idled, the system’s
power requirement should have also dropped; it did, but the voltage
provided by house power was not low enough.

Without this data, NERSC would not have realized that every
panel in the HPC portion of the data center’s substation trans-
former’s output voltage needed to be shunted. It was unfortunate
that this problem was not identified during the commissioning
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of either the transformer or switchboard. However, NERSC was
moving back into the Lab environment with different protocols
and expectations where decisions can be distributed across depart-
ments. Further, while the Lab Facilities had experience in building
office buildings, they did not have the experience building data
centers which have different power requirements. Fortunately, this
determination was made before the delivery of the rest of Cori.

4.2 Facility Power Planning for a
Next-Generation HPC System

Each new NERSC high-performance computing system is orders of
magnitude larger than its predecessors. The upcoming Perlmutter
system, with an expected delivery date in late 2020, is no excep-
tion - it will be the largest NERSC HPC system to date. In order to
support this pre-exascale machine, a number of facility upgrades
are required, including upgrading electrical substations for the
additional compute power requirements, as well as additional me-
chanical components, such as air handlers, evaporative coolers,
water pumps, and cooling tower cells for controlling the environ-
ment in the data center. These cooling and environmental units
are typically fed power from a substation that is separate from the
compute substations, helping to separate the power used by the
compute infrastructure from the power needed to maintain the
environment of the data center, i.e., a controlled temperature and
humidity that maximizes energy efficiency.

In planning for these additional units to control the data center
environment, the power requirements for each of these units must
be considered. Prior to the Perlmutter facility upgrades, ShyhWang
Hall utilized one dedicated mechanical substation for powering
these non-compute components. To estimate the environmental
and cooling power needs based on the units that are being added
for Perlmutter, a routine capacity study was performed, using the
electrical specifications of each component to calculate the theoreti-
cal peak load when all components are working at 100% power. The
result of this study recommended to install an additional substation
to support the increased mechanical power for Perlmutter.

However, the Berkeley Lab Facilities Master Specification per-
mits a different calculation to be used for mechanical load planning
in data center upgrades. The alternate calculation requires at least
one year’s worth of operational data at the facility in which the
upgrades will take place. Due to prior instrumentation of the me-
chanical components and the draw from the substation, OMNI
contained fine-granularity readings of these points over a total
duration of more than one year. The data analysis showed that
operational power usage was 60 percent of the total power usage
from the general specifications. This led Lab’s project management
and power experts to determine that an additional substation was
not required for the new system - the existing one would be capable
of supporting the new load. Plots from these analyses are shown in
Figure 4 and Figure 5.

Figure 4 shows the total power load of all of the compute sub-
stations (yellow line, Substations 590 [Non-HPC Compute], 628
[Edison], 612 [Cori], and 613 [Cori]) relative to the mechanical sub-
station (green line, Substation 596) from January 1, 2018 at 12:00AM
to present. This figure illustrates the consistency of the total power
load of the compute resources at the center and, correspondingly,

Figure 4: Total Power Load from the Compute Substations
vs. Mechanical Power (kW)

the largely consistent load of the mechanical substation. In the
warmer months (e.g., 2018-6 through 2018-8), there is a higher
than average overall demand on the mechanical substation but this
demand does not exceed 1MW.

Figure 5: Power (kW) vs. Outside Air Wetbulb Temperature
in Farenheight.

Figure 5 shows the load on the mechanical substation but this
time relative to the outside air wet bulb. The wet bulb temperature
measures the evaporative cooling and accounts for both the tem-
perature and the moisture in the air. Previous analysis of data in
OMNI has shown that the outside air wet bulb temperature has
the largest influence on the overall power usage effectiveness of
the facility. Using the scatterplot in Figure 5, NERSC staff verified
that the higher readings above an 800 kW power draw are occur-
ring on days when the wet bulb temperature is around 58F and
above (i.e., days when it is both hot and humid outside). Analysis
of the plot also shows that the majority of hours over the 15-month
timespan are concentrated in that 300-500 kW power consumption
range where the wet bulb reading fluctuates between 45-55F. This
demonstrates that the Berkeley climate and evaporative cooling has
a significant impact on maximizing energy efficiency and reducing
unnecessary costs. Ultimately, having the historical data available
in OMNI enabled the Facilities team to analyze the data and come
to the conclusion that Perlmutter’s load would not require a new
substation, saving NERSC about $2M.

An indirect benefit of analyzing these operational data produced
some insights regarding the Slurm job scheduler and demonstrated
why the power had a stable draw over time. Going back to Figure 4,
there are some highs and lows over time, however, compute power
(the yellow line) generally stays within the 5.0 MW to 6.5 MW, in
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comparison to mechanical power (green line), which also stayed
relatively even, mostly below 1.0 MW. The engineers expected
to have more variations in the fluctuations but discovered when
correlating this to Slurm data, that the rules to backfill a large job
make the queues in general consistently full.

For example, when the system prepares for a large job requiring
1000 nodes for 6 hours, it takes time for these nodes to be prepared
and ready. While waiting, if a job that requires a smaller amount of
nodes and a completion time before the large job would start, the
scheduler will have that small job run. As a result, the large system
queues are mostly always filled which is why the power usage for
the compute systems stays stable. Therefore, if the large systems are
consistently at a known load across a time period, then it follows
that mechanical power usage will also be consistent across time,
providing there are no extreme weather conditions that occur.

Examining these two data sets in parallel provided confirmation
to the HPC systems staff that they have efficiently managed the
queue requirements and the job scheduler. Further, this data con-
firmed to Facilities and the Energy Efficiency groups how NERSC
is able to achieve a stable draw on power relating to the compute
systems. Having diverse data in OMNI allowed multiple groups
to see insights into not only power usage but also job scheduler
efficiency.

4.3 Collaborations with vendors
OMNI’s scale of the data over time allowed the facility to collabo-
rate with vendors in helping solve issues not previously possible
as highlighted in the scenarios described below. For example, the
OMNI team specifically wanted to collect Cray system data about
power, temperature, fan speeds, water temperature, and jobs run-
ning for all the nodes, slots and cabinets. Much of this information
is internal to the system and was previously not exposed by Cray
to their clients.

If a site needed to collect this data, it was parsed from text files
at various machine endpoints and prone to errors. Alternatively,
if this information was not available, a report had to be requested
directly from Cray.

In collaboration with NERSC systems engineers, Cray created
an Application Programming Interface (API) plugin architecture
called xtpmd whose daemon runs on the Cray System Management
Workstation (SMW) and handles System Environment Data Col-
lections (SEDC) and high-speed power telemetry data as a stream
before it is injected into the Power Management Database (PMDB).
NERSC can now collect this data and stream it into OMNI at a 1
second interval. The process provides easy access to the data, on
the spot analysis if needed, and long term archival purposes.

Using the API, NERSC engineers created a process where sites
can independently write their own plugins to gather this data. The
plugins can export data off Cray XC systems using Kafka, Redis
Pub/Sub, and RabbitMQ. NERSC implemented this and streamed
the data into RabbitMQ. As a result of this collaboration to gather
system data into OMNI, this plugin is now available to the commu-
nity. Figure 6 shows a partial display of a Cori power dashboard
from OMNI.

While this is not a direct result of data analysis in OMNI, this
was an important step in getting a previously unavailable external

Figure 6: Cori power dashboard - partial display.

source of data into the collection. Further, this method not only
served NERSC but also served the community at large.

As a result of collecting SEDC and telemetry data into OMNI,
NERSC and Cray investigated a random anomaly occurring in
systems. When Cray sites reported a particular thermal alarm, Cray
engineers were unable to duplicate the problem because they only
had 120 days of data available. Cray askedNERSC to examine almost
one year of data from OMNI to find instances of the occurrence.
Engineers were able to correlate the anomaly to a pattern of system
events. This analysis resulted in Cray adjusting a thermal alarm
setting in the HPC systems on sites affected. This solution was
made possible by analyzing OMNI historical data and confirming
that the thermal setting was causing intermittent alarms. For the
NERSC system, a threshold alarm is now in place at the correct
levels that alerts when this instance occurs.

There is also future work relating to implementing variable fan
speeds with the potential to lower power usage on the HPC system
that can now be done with SEDC data in OMNI.

4.4 Arc Flash
On December 31, 2018, the facility experienced an arc flash that
triggered a level one fire alarm, the lowest alarm that detected
smoke but not fire, as a result of a damaged bus bar. Once safe to
return to the facility, during the inspection with the fire department,
Operations staff noticed the temperature was warmer than usual
on the HPC floor. After examining several sets of environmental
data from OMNI in correlation to the Building Management System
(BMS) software, the team discovered that the air handlers had been
automatically turned off, which is the correct action should a fire
occur. However, restarting the air handlers required the Berkeley
Lab fire alarm system to be reset and could only be completed by an
authorized fire technician. Restarting the air handlers also required
an authorized facility engineer who had access to the Lab’s BMS
software.

Figure 7 is a graph of the surface temperature as recorded from
four PQube sensors in the data center. Immediately after the arc
flash event, the graph shows a significant increase in temperature
for all sensors from 17.5 degrees Celsius all the way to 23 degrees
Celsius. OMNI data shows that the room temperature was rising
1 degree per minute on average with the possibility that some
equipment’s maximum temperature rating would be reached before
others. While this is not a direct analysis of data, visualizing BMS
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Figure 7: PQube Sensor Surface Temperature immediately
after Arc Flash Event.

data in OMNI dashboards that show temperature trends allowed
Operations staff to prioritize which equipment needed immediate
attention.

As a result, these processes have been examined and the facility
has determined new actions to take in cooperation with the appro-
priate Berkeley Lab departments to ensure the safety of the assets
on the HPC floor.

5 LESSONS LEARNED
Fourteen years ago, when NERSC moved to the Oakland Scientific
Facility, the Operations team gradually started instrumenting sys-
tems and sensors to collect environmental data on an as-needed
basis. In moving to Shyh Wang Hall, it was important that the new
facility be outfitted with instrumentation from the ground up, with
the infrastructure built around it. When the management team saw
the potential of centralized data for analysis, correlation, business
decisions, capacity planning, facility planning, etc, data collection
became a necessity.

5.1 Philosophy differences
Operational data, not just environmental data. OMNI initially col-
lected data from the sensors and devices on theHPC floor tomonitor
readings from sources like power, humidity, air flow, temperature,
and water pressure. These measurements were selected because
they are essential to maintaining the facility and to creating the re-
quired environment for the large systems. Soon after, other NERSC
groups saw the potential of a centralized data store of collected
data and more sources, such as system logs, network data, disk
I/O, SNMP border traffic, and more, were requested and added into
OMNI. The initial system configuration was a 4u/4 node system
that grew by a factor of 4 in the second year and another factor of
4 in the third year.

In hindsight, a discussion of the potential of this type of data
collection should have happened earlier however, we do not believe
this would have been possible because no one saw its true potential
until a significant amount of heterogeneous data was collected.
The collection started as environmental data for the facility and
eventually became operational data for NERSC.

How much and which data? OMNI collects, centralizes, and archives
data already being collected in a standard format. This can poten-
tially be a lot of data. In addition, the design of OMNI to “collect all
data and store it forever” is counter to the traditional philosophy

that one should “collect [this type of] data only to answer a spe-
cific question.” Many organizations adhere to this more traditional
policy, collecting only what they can gain quick insights from. In
contrast, the insights gained by using OMNI have demonstrated
that comprehensive data sets with rich historical timelines can
create new opportunities for insights.

From the OMNI perspective, it is better to collect 100% of the
data and be able to only analyze 80% than to collect only 80% of
the data and realize that there is something in the missing 20% that
would have aided in the analysis. Our worst case scenario would be
someone trying to analyze a year of dataset A and B in comparison
to dataset C only to find out that dataset C was not being collected.
In selecting what data is relevant to collect, we adopt a philosophy
of: if it is being collected anywhere and insights are being gained
from it, then it should be stored in OMNI.

What other groups did not appreciate is, once the data is stored
in OMNI, the data is no longer owned by the group or individual(s)
but instead belongs to NERSC. Eliminating ownership issues breaks
down barriers to information and insight. The OMNI team ensures
that the data is segmented to provide data security; however, the
purpose of placing the data in a centralized location is to enable
all groups of data to be analyzed together, correlated together, and
used together to answer complex questions.

Who performs analysis and correlation? One of the key challenges
faced after the data was stored in OMNI was who would perform
analysis and correlation on these datasets. Operations staff already
used OMNI for their own analyses and correlations that aided
in the day-to-day decision-making, diagnoses, early detection of
issues, and future planning activities of the group. However, as new
data sources were added from other teams or systems, there was
an implicit assumption that we were also qualified data scientists.
The team was asked, “what new insights did you get from your
collection?” As system administrators, our expertise is in acquiring
the collection, its storage, and the availability of the data. It is a
challenge to take the leap from this function into one of a data
scientist.

We should have communicated our intentions from the begin-
ning much better, i.e., that we wanted to centralize the storage of
relevant data center information for ease of analysis, not neces-
sarily to be the group that analyzes the data for other groups. To
bridge the gap, we provide documentation for all of the data sources
and have created tutorials on how to access, query, analyze, and
visualize it.

5.2 Growth and scalability
The initial configuration of OMNI is less of a challenge to implement
for NERSC because of the facility’s non-classified status. NERSC has
its own subnet, managed by its own networking team. Data from
its sources are not moving outside of the NERSC subnet, possibly
unlike that at other Labs or organizations.

The OMNI team’s decision to use open source software is a
business decision. Over the years, it had been their experience with
a paid product that they are constantly asking for and waiting for
updates, features, and other improvements. The cost of the license
can be an issue and the group faced the dilemma of either paying
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for a license and having to purchase reduced hardware or use open-
source in order to be able to purchasemore hardware. Besides, when
there is an open-source alternative, management would require to,
at minimum, try the open-source version first.

Initially purchasing as much hardware as possible is important
to grow to scale and this is where we wanted to spend our budget.
Wanting to contribute to the open source community, once there
was enough data collected and we began to scale, the team quickly
troubleshoot the problems and shared solutions. Solving problems
was a much better fit for the team than reporting a problem and
waiting. However, supporting the infrastructure and making the
data highly available became a challenge especially when the issues
we encountered are not those of the community. The OMNI data
collection scale is so large and the data so diverse that there is no
one to ask for advice and the team is on their own to solve it.

Over the years, the team saved close to $350K in licensing costs
yearly and continue to save that as long as the open source product
is used. Today there are features in the paid product that would
be nice to have, but we hope they will eventually be addressed as
another open source product. For now, the teamwould not exchange
their decision to remain with the open source product and maintain
their flexibility to solve problems they encounter in the future.

6 CONCLUSION
The OMNI team plans the following expansion in the near future:

• upgrading the storage drives to faster medium from SATA
to non-volatile memory express (NVME)

• replacing collectdwhere Prometheus can be used in prepa-
ration for Perlmutter

• using Kubernetes as OMNI’s container management system
• increasing the ingest rates to 100k/second or more, poten-
tially bypassing RabbitMQ and directly sending data streams
to Victoria Metrics. This extremely fast time-series database
is much more efficient for long-term storage and can directly
ingest data from Prometheus.

OMNI continues to grow and new data sources are constantly
being identified to be incorporated into the collection, for example,
Lightweight Distributed Metric Service (LDMS) data. Using OMNI,
NERSCmanagement is able to provide the necessarymetrics to DOE
on a monthly basis. Operational teams are able to use real-time data
to make the best daily decisions to keep the HPC systems highly
available and highly utilized by the scientific community. Many
groups use OMNI data to gain new observations on how to improve
performance, utilization and to gain insights from the correlated
information. The data has been used to lower costs, save hardware,
assist with business decisions and influence collaborations. NERSC
continues to achieve operational efficiency in its new facility and
the use of OMNI datasets helps makes this possible.
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