
1

Hopper Phase-2 Migration

 Harvey Wasserman
User Services Group

Nick Wright
Advanced Technologies Group

NUG Training
October 2010

www.nersc.gov

2

The NERSC Hopper System

•  Cray XT6, 6,392 nodes, 153,408 cores, 2.1-
GHz AMD Magny-Cours Opteron processor

•  Cray Gemini Interconnect
•  1.25 Petaflops peak performance
•  2-PB disk Lustre filesystem

3

PROGRAMMING
Part 1

4

What is Different About Hopper?

•  The new Hopper
Phase-2 system will
have 24 cores per
node.

•  Franklin has only four.

•  The way that you use
the new Hopper
system may have to
change as a result.

 AMD Magny-
Cours Die

AMD Barcelona Die

5

What Else is Different ?

•  Less memory per core: 1.33 GB vs. 2.0 GB
－ 8 GB per node (Franklin);
－ 32 GB per node (Hopper, 6,008 nodes)

•  “OOM killer terminated this process” error
OOM = Out of Memory

•  (Hopper will have 384 larger-memory nodes
64 GB.)

6

Why Less Memory Per Core?

•  Technology trends:
－ Memory density 2X every 3 yrs; processor logic every 2
－ Storage costs ($/MB) drops more gradually than logic costs

•  NERSC optimized the Hopper system for a diverse workload
－  fixed budget; memory cost is already a significant portion.

Source: David Turek, IBM

Cost of Computation vs. Memory

Source: IBM

7

What Else is Different ?

•  “Deeper” Memory Hierarchy in Hopper

Registers

Caches

Memory

Disk

1000s of Bytes
~2 ns per access

MBytes
~10s ns per access

Gbytes
~100ns ns per access

PBytes
~ms per access

Memory Hierarchy Levels Faster

Larger

Memory
Memory
Memory

8

P2

P3

Memory
Memory

Memory

Memory
P1

What Else is Different ?

•  “Deeper” Memory Hierarchy
－ NUMA: Non-Uniform Memory Architecture
－ All memory is transparently accessible but...
－  Longer memory access time to “remote” memory

2xDDR1333 channel
21.3 GB/s

3.2GHz x8 lane HT
6.4 GB/s bidirectional

3.2GHz x16 lane HT
12.8 GB/s bidirectional

Memory
Memory

Memory
Memory

Hopper Node

P0 NUMA NODE NUMA NODE

NUMA NODE NUMA NODE

– A process running on NUMA node 0 accessing NUMA
node 1 memory can adversely affect performance.

21GB/s 21GB/s

21GB/s 21GB/s

12.8GB/
s

12.8GB/
s

19
.2

G
B

/s

19
.2

G
B

/s

9

Hopper vs. Franklin

Memory
Memory

Franklin: Uniform Memory Architecture

Memory
Memory

P2

P3

Memory
Memory

Memory
Memory

Memory
Memory

P0

P1

NUMA
NODE

NUMA
NODE

NUMA
NODE

NUMA
NODE

Hopper: Non-Uniform Memory Architecture

10

What About the Future?

•  The technology trends point to
－  Little or no gain in clock speed or

performance per core;
－  Rapidly increasing numbers of cores per

node;
－  Decreased memory capacity per core

(possible slight increase per node)
－  Decreased memory bandwidth per core
－  Decreased interconnect bandwidth per

core
－  Deeper memory hierarchy

•  Hopper is the first example at
NERSC but surely not the last

11

Will My Existing Code Run?

•  Probably, yes, your MPI code will run.

•  But the decrease in memory available per core may
cause problems ...
－ May not be able to run the same problems.
－ May be difficult to continue “weak”

scaling (problem size grows in proportion to
machine size).

•  (and your MPI code might not use the machine most
effectively.)

•  Time to consider alternative programming models?

12

What is NERSC Doing
About All This?

•  NERSC-Cray
“Programming Models
Center of Excellence”

•  Close ties to UCB and
LBNL Computing
Research Division

•  Investigation of Advanced
Programming Models

•  Study of application
software that NERSC
provides
－  OpenMP ready?
－  OpenMP capable?

13

What Does NERSC Recommend?

•  NERSC recognizes the huge investment in MPI.

•  But given the technology trends...

•  We suggest a move towards programming models
other than pure MPI

•  A good place to start: MPI + OpenMP (“Hybrid”)

－ MPI for domain decomposition and OpenMP threads within a
domain

－ Suggested primarily to help with memory capacity

14

Isn’t This the Same as Clusters of
SMPs (.ca 2002)?

•  SMP: Symmetric Multiprocessor
－  aka clusters, Networks of Workstations, CLUMPS, ...
－  SGI Origin, ASCI Q/Blue Mountain, Berkeley NOW, IBM SP, ...

•  In some ways the issues are the same:
－ Memory architecture is the key

•  But chip multiprocessors have vastly
improved inter-core latencies and bandwidth.

•  With today’s trends we have no choice.

15

What are the Basic Differences
Between MPI and OpenMP?

•  Program is a collection of processes.
•  Usually fixed at startup time

•  Single thread of control plus private
address space -- NO shared data.

•  Processes communicate by explicit send/
receive pairs

•  Coordination is implicit in every
communication event.

•  MPI is most important example.

K.Yelick, CS267 UCB

•  Program is a collection of threads.
•  Can be created dynamically.

•  Threads have private variables and
shared variables

•  Threads communicate implicitly by
writing and reading shared variables.
•  Threads coordinate by synchronizing

on shared variables
•  OpenMP is an example

Shared Address Space Model

Message Passing Model
Interconnect

16

Why are MPI-only Applications
Memory Inefficient?

•  MPI codes consist of n copies of the program

Network

System buffers

－ 
•  MPI codes require

system-level memory
 for messages
－  Assuming the very common

synchronous/blocking style

• 

•  MPI codes require
application-level memory
for messages
－ Often called “ghost” cells

17

Why Does Hybrid/OpenMP Help?

•  Reduced
Memory
Usage:
－ Fewer

instances of
your program
on the node

Figures from Kaushik Datta, Ph.D. Dissertation, UC Berkeley, 2009

－ Eliminate
some ghost
cell memory

“Pure” MPI “Pure” OpenMP Hybrid: 4 MPI tasks,
6 threads per MPI

18

Why Does Hybrid/OpenMP Help?

•  Send larger MPI
messages
－ small messages are

expensive
•  No intra-node

messages

19

Why Does Hybrid/OpenMP Help?

•  There may be
scalability limits to
domain decomposition

•  OpenMP adds fine
granularity (larger
message sizes) and
allows flexibility of
dynamic load
balancing.

•  Some problems have
two levels of
parallelism

20

What are the Benefits of OpenMP?

•  Uses less memory per node
•  At least equal performance
•  Additional parallelization may fit algorithm well
－  especially for applications with limited domain parallelism

•  Possible improved MPI performance and load
balancing
－ Avoid MPI within node

•  OpenMP is a standard so code is portable
•  Some OpenMP code can be added incrementally
－ Can focus on performance-critical portions of code

•  Better mapping to multicore architecture

21

What are the Disadvantages of
OpenMP?

•  Additional programming complexity
•  Can be difficult to debug race conditions
•  Requires explicit synchronization
•  Additional scalability bottlenecks:
－ thread creation overhead, critical sections, serial

sections for MPI
•  Cache coherence problems (false sharing) and data

placement issues
－ Memory locality is key...
－ but OpenMP offers no direct control

22

Are There Additional Solutions?

•  Sometimes it may be better to leave cores
idle
－ Improves memory capacity and bandwidth
－ Improves network bandwidth

•  However, you are charged for all cores

23

Typical OpenMP Program

•  Execution begins with a single “Master
Thread”

•  Threads “fork” at each parallel region, join at
end

24

Can I Debug OpenMP and Hybrid
Codes?

•  Difficult because of race
conditions – imprecise
and non-reproducible
ordering of memory
read/store operations

•  Common bugs:
－  incomplete or misplaced

synchronization
－  improper scoping
－  occur often as a result of

converting serial code

25

Screenshot of a Totalview
debuggging session with
a hybrid MPI / OpenMP
code.

26

Can I Analyze OpenMP
Performance?

Yes: Use CrayPat Tool
module load xt-craypat

cd $SCRATCH/...
make (e.g., ftn –o my.exe mycode.f)
pat_build –g omp

qsub ...
aprun –n #_cores my.exe+pat!
pat_report datafile.xf > out!

27

What are the Disadvantages of
OpenMP?

•  Additional programming complexity
•  Can be difficult to debug race conditions
•  Requires explicit synchronization
•  Additional scalability bottlenecks:
－ thread creation overhead, critical sections, serial

sections for MPI
•  Cache coherence problems (false sharing) and data

placement issues
－ Memory locality is key...
－ but OpenMP offers no direct control

28

What’s All This About Locality?

•  Remember: All memory
accesses on the node
happen transparently
－  but remote access takes longer

•  Need NUMA control -
memory and process
affinity
－ Improve performance
－ Eliminate performance

variability
－ Avoid resource

contention

Where do processes, threads, and
their memory go on the Hopper

node?

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

29

Memory Affinity via “First Touch”

•  Memory is mapped to the NUMA node containing the
core that first touches that memory.

•  “Touch” means write (not allocate)
•  Solution (Golden Rule): have each thread initialize

the points that it will later be processing
－  Initialize memory immediately after allocating it
－  Initialize memory in parallel regions, not in serial code
Recommended: Tutorial M16 at SC10

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

30

Si=AXi+Yi Performance

Measurements by
Hongzhang Shan
(CRD)

31

More on Locality & Other Factors

32

RUNNING ON HOPPER
Part 2

33

Running on Hopper

•  Submit a job to the batch system requesting
resources
－ Interactive
－ Batch
－  #PBS –l mppwidth = Total_Number_of_cores_needed

•  Launch executable with aprun!
－ Need to ensure that aprun command is consistent

with batch resources requested

34

Running on Hopper

•  You must recompile

－ Franklin and Hopper Phase 1 binaries include
SeaStar
－ Hopper Phase 2 binaries need Gemini

=> you must recompile

35

aprun: Example 1

•  Pure MPI application, using all cores in a
node: 32 MPI tasks on 32 cores
#PBS –l mppwidth=32!
aprun –n 32 a.out!

Franklin

8 nodes, fully-populated,
(32 cores charged against allocation)

H
opper

2 nodes, not fully-populated
NOTE: you are charged for all the cores allocated
(48 cores charged against allocation)
(8 cores on one node, 24 on other node is default)

On Hopper, you can request
actual number needed;
batch system will allocate
required number of nodes.
NOT RECOMMENDED!!!
Request full nodes
(#PBS –l mppwidth=48)

36

Important Note About Defaults

•  Non-local Hopper NUMA node memory is not
available unless your combination of #PBS
directives and aprun command request it.

•  Example: If you use 1/2 the cores in the node,
and all are on two NUMA nodes only 1/2 the
Hopper node memory is available.

•  If you don’t fully populate the node be sure to
spread your cores over all NUMA nodes

37

aprun: Example 2

•  Underpopulate nodes by 1/2 to save memory,
48 MPI tasks

• 

 Requires 48 tasks ÷ 2 tasks per node X 4 cores per node
 = 96 cores (24 nodes * 4 cores per charged against allocation)

 Requires 48 tasks ÷ 12 tasks per node X 24 cores per node
 = 96 cores (4 nodes * 24 cores per charged against allocation)

#PBS –l mppwidth=96!
aprun –n 48 –N 2 a.out!

Franklin
H

opper #PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 3 a.out!

38

aprun NUMA options

•  Important to ensure that MPI tasks are
assigned separate NUMA nodes when
underpopulating the node

aprun –S cores!

H
opper

Cores per NUMA node; 1-6, default 6;

aprun –sn nodes!
NUMA nodes per Hopper node; 1-4, no default:

aprun –sl node-list!

NUMA node list; 0,1,2,3 comma or hyphen delimited:

39

aprun: Example 2

•  Underpopulate nodes by 1/2 to save memory,
48 MPI tasks

 Requires 48 tasks ÷ 12 tasks per node X 24 cores per node
 = 96 cores (4 nodes * 24 cores per charged against allocation) H

opper

#PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 3 a.out!

#PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 4 a.out!

optimal

avoid

40

aprun NUMA options

aprun –cc [cpu | numa_node | none]!

H
opper

CPU affinity: Bind processes / threads
 - to each core within a NUMA node, or
 - to any core within a NUMA nodes or
 - don’t bind at all;

-cc is the default for MPI codes

aprun –ss!

Allocate memory only local to the NUMA node; do
not use if underpopulating

41

MPI, OpenMP and aprun

•  Use both the OMP_NUM_THREADS
environment variable + aprun –n -d
options

•  aprun –n # option specifies # of MPI
processes

•  aprun –d # option specifies number of
threads per MPI task.
－ each of the “-n” MPI processes creates “-d”

threads

42

aprun: Example 3

•  Hybrid OpenMP / MPI

Franklin

92 MPI tasks, 4 OpenMP threads each:
Total cores = 92 tasks 1 MPI task per node X 4 cores per
node = 368 (92 nodes)

#PBS mppwidth=368!
export OMP_NUM_THREADS=4!
aprun –n 92 –N 1 –d 4 a.out!

H
opper

92 MPI tasks, 6 OpenMP threads each:
Total cores = 92 tasks 4 MPI tasks per node X 24 cores
per node = 552 (23 nodes)

#PBS mppwidth=552!
setenv OMP_NUM_THREADS 6!
aprun –n 92 –N 4 –S 1 –d 6 a.out!

43

Some Error Messages

•  Claim exceeds reservation's node-count
－ On Franklin usually caused by requesting fewer

cores (#PBS –l mppwidth=#) than aprun needs
－ On Hopper may result from improperly spreading

processes and threads over NUMA nodes

•  Claim exceeds reservation's memory
－ On Hopper; happens because having a compute

node reserved for your job does not guarantee
that you can use all NUMA nodes.

44

PERFORMANCE OF HOPPER
Part 3

“Prediction is difficult - especially for the
future.”

- Y. Berra

“The future will be just like the
present - only more so.”

- Groucho Marx

45

What Performance Should I Expect on
Hopper Phase-2?

Processor Cores Frequency
(GHz)

Peak
(GFLOPS)
per Core

Peak
(GFLOPS)

per
Processor

Bandwidth
(GB/s)

Balance
(Bytes/
Flop)

Hyper-
Transport

Technology

Memory
Technology

Barcelona
(Cray XT4)

4 2.3 9.2 36.8 12.8 0.34 3x
2GT/s

2x DDR2
667 per 4

cores

Magny
Cours
(Cray XT6)

12 2.1 8.4 100.8 42.6 0.42 4x
 6.4 GT/s

2x DDR3
1333 per 6

cores

46

What Performance Should I Expect on
Hopper Phase-2?

PERFORMANCE DATA ARE PROPRIETARY –
NOT TO BE PUBLISHED IN ANY FORM

Cray XT6 PERFORMANCE DATA ARE FROM
AN EARLY VERSION OF THE SYSTEM

47

What Performance Should I Expect on
Hopper Phase-2?

PRELIMINARY PERFORMANCE DATA:
PROPRIETARY – NOT TO BE PUBLISHED IN

ANY FORM

48

NERSC Application Benchmarks

Code Language Description
CAM F77 Community Atmosphere Model, “D”

grid
GAMESS F77 Quantum Chemistry RHF gradient

MP2
GTC F90 Particle in Cell – Fusion turbulence
IMPACT-T F90 +

FFTW
Particle in Cell – Accelerator design

MAESTRO F90 (C) Low Mach number flow
astrophysical

MILC C Lattice QCD
PARATEC Fortran +

FFTW +
BLAS

Plane Wave Density Functional
Theory

PMEMD F90 Particle Mesh Ewald Molecular
Dynamics

50

Application Benchmark Times
(run times in seconds)

(This slide intentionally left blank in
published version of the slides)

51

Summary

•  Hopper is performing well.

•  Even for codes performing well you would be well
advised to consider an alternative to MPI-only
programming.

•  The key to success is likely to be careful
consideration of locality.

•  NERSC can help.

52

53

About the Cover

53

Low swirl burner combustion simulation. Image shows flame radical, OH (purple surface and
cutaway) and volume rendering (gray) of vortical structures. Red indicates vigorous burning
of lean hydrogen fuel; shows cellular burning characteristic of thermodiffusively unstable fuel.
Simulated using an adaptive projection code. Image courtesy of John Bell, LBNL.
Hydrogen plasma density wake produced by an intense, right-to-left laser pulse. Volume rendering of
current density and particles (colored by momentum orange - high, cyan - low) trapped in the plasma wake
driven by laser pulse (marked by the white disk) radiation pressure. 3-D, 3,500 Franklin-core, 36-hour
LOASIS experiment simulation using VORPAL by Cameron Geddes, LBNL. Visualization: Gunther Weber,
NERSC Analytics.

False-color image of the Andromeda Galaxy created by layering 400 individual images
captured by the Palomar Transient Factory (PFT) camera in February 2009. NERSC systems
analyzing the PTF data are capable of discovering cosmic transients in real time. Image
courtesy of Peter Nugent, LBNL.

Numerical study of density driven flow for CO2 storage in saline aquifers. Snapshot of CO2
concentration after convection starts. Density-driven velocity field dynamics induces convective
fingers that enhance the rate by which CO2 is converted into negatively buoyant aqueous phase,
thereby improving the security of CO2 storage. Image courtesy of George Pau, LBNL

Simulation of a global cloud resolving model (GCRM). This image is a composite plot showing
several variables: wind velocity (surface pseudocolor plot), pressure (b/w contour lines), and a
cut-away view of the geodesic grid. Image courtesy of Professor David Randall, Colorado State
University.

The exciton wave function (the white isosurface) at the interface of a ZnS/ZnO nanorod.
Simulations performed on a Cray XT4 at NERSC, also shown. Image courtesy of Lin-Wang
Wang, LBNL.

