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The NERSC Hopper System 

•  Cray XT6, 6,392 nodes, 153,408 cores, 2.1-
GHz AMD Magny-Cours Opteron processor  

•  Cray Gemini Interconnect 
•  1.25 Petaflops peak performance 
•  2-PB disk Lustre filesystem 
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PROGRAMMING 
Part 1 
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What is Different About Hopper? 

•  The new Hopper 
Phase-2 system will 
have 24 cores per 
node.   

•  Franklin has only four.   

•  The way that you use 
the new Hopper 
system may have to 
change as a result. 

 AMD Magny-
Cours Die 

AMD Barcelona Die 
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What Else is Different ? 

•  Less memory per core: 1.33 GB vs. 2.0 GB 
－ 8 GB per node (Franklin);  
－ 32 GB per node (Hopper, 6,008 nodes) 

•  “OOM killer terminated this process” error 
OOM = Out of Memory 

•  (Hopper will have 384 larger-memory nodes 
64 GB.) 
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Why Less Memory Per Core? 

•  Technology trends: 
－ Memory density 2X every 3 yrs; processor logic every 2  
－ Storage costs ($/MB) drops more gradually than logic costs 

•  NERSC optimized the Hopper system for a diverse workload 
－  fixed budget; memory cost is already a significant portion. 

Source: David Turek, IBM 

Cost of Computation vs. Memory 

Source: IBM 
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What Else is Different ? 

•  “Deeper” Memory Hierarchy in Hopper 

Registers 

Caches 

Memory 

Disk 

1000s of Bytes 
~2 ns per access 

MBytes 
~10s ns per access 

Gbytes 
~100ns ns per access 

PBytes 
~ms per access 

Memory Hierarchy Levels Faster 

Larger 

Memory 
Memory 
Memory 
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P2 

P3 

Memory 
Memory 

Memory 

Memory 
P1 

What Else is Different ? 

•  “Deeper” Memory Hierarchy 
－ NUMA: Non-Uniform Memory Architecture 
－ All memory is transparently accessible but... 
－  Longer memory access time to “remote” memory 

2xDDR1333 channel 
21.3 GB/s 

3.2GHz x8 lane HT 
6.4 GB/s bidirectional 

3.2GHz x16 lane HT 
12.8 GB/s bidirectional 

Memory 
Memory 

Memory 
Memory 

Hopper Node 

P0 NUMA NODE NUMA NODE 

NUMA NODE NUMA NODE 

– A process running on NUMA node 0 accessing NUMA      
node 1 memory can adversely affect performance. 

21GB/s 21GB/s 

21GB/s 21GB/s 

12.8GB/
s 

12.8GB/
s 

19
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Hopper vs. Franklin 

Memory 
Memory 

Franklin: Uniform Memory Architecture  

Memory 
Memory 

P2 

P3 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 

P0 

P1 

NUMA 
NODE 

NUMA 
NODE 

NUMA 
NODE 

NUMA 
NODE 

Hopper: Non-Uniform Memory Architecture  
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What About the Future? 

•  The technology trends point to 
－  Little or no gain in clock speed or 

performance per core; 
－  Rapidly increasing numbers of cores per 

node; 
－  Decreased memory capacity per core 

(possible slight increase per node) 
－  Decreased memory bandwidth per core 
－  Decreased interconnect bandwidth per 

core 
－  Deeper memory hierarchy 

•  Hopper is the first example at 
NERSC but surely not the last 
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Will My Existing Code Run? 

•  Probably, yes, your MPI code will run. 

•  But the decrease in memory available per core may 
cause problems ... 
－ May not be able to run the same problems. 
－ May be difficult to continue “weak” 

scaling (problem size grows in proportion to  
machine size). 

•  (and your MPI code might not use the machine most 
effectively.) 

•  Time to consider alternative programming models? 
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What is NERSC Doing  
About All This? 

•  NERSC-Cray  
“Programming Models 
Center of Excellence” 

•  Close ties to UCB and 
LBNL Computing 
Research Division 

•  Investigation of Advanced 
Programming Models 

•  Study of application 
software that NERSC 
provides 
－  OpenMP ready?   
－  OpenMP capable?  
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What Does NERSC Recommend? 

•  NERSC recognizes the huge investment in MPI. 

•  But given the technology trends... 

•  We suggest a move towards programming models 
other than pure MPI 

•  A good place to start: MPI + OpenMP (“Hybrid”) 

－ MPI for domain decomposition and OpenMP threads within a 
domain 

－ Suggested primarily to help with memory capacity 
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Isn’t This the Same as Clusters of 
SMPs (.ca 2002)? 

•  SMP: Symmetric Multiprocessor 
－  aka clusters, Networks of Workstations, CLUMPS, ... 
－  SGI Origin, ASCI Q/Blue Mountain, Berkeley NOW, IBM SP, ... 

•  In some ways the issues are the same: 
－ Memory architecture is the key 

•  But chip multiprocessors have vastly 
improved inter-core latencies and bandwidth.   

•  With today’s trends we have no choice. 
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What are the Basic Differences 
Between MPI and OpenMP? 

•  Program is a collection of processes. 
•  Usually fixed at startup time 

•  Single thread of control plus private 
address space -- NO shared data. 

•  Processes communicate by explicit send/
receive pairs 

•  Coordination is implicit in every 
communication event. 

•  MPI is most important example. 

K.Yelick, CS267 UCB 

•  Program is a collection of threads. 
•  Can be created dynamically. 

•  Threads have private variables and 
shared variables 

•  Threads communicate implicitly by   
writing and reading shared variables. 
•  Threads coordinate by synchronizing 

on shared variables 
•  OpenMP is an example 

Shared Address Space Model 

Message Passing Model 
Interconnect 
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Why are MPI-only Applications 
Memory Inefficient? 

•  MPI codes consist of n copies of the program  

Network 

System buffers 

－    
•  MPI codes require  

system-level memory 
 for messages 
－  Assuming the very common  

synchronous/blocking style 

•    

•  MPI codes require  
application-level memory  
for messages 
－ Often called “ghost” cells 
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Why Does Hybrid/OpenMP Help? 

•  Reduced 
Memory 
Usage: 
－ Fewer 

instances of 
your program 
on the node 

Figures from Kaushik Datta, Ph.D. Dissertation, UC Berkeley, 2009 

－ Eliminate 
some ghost 
cell memory 

“Pure” MPI “Pure” OpenMP Hybrid: 4 MPI tasks, 
6 threads per MPI 
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Why Does Hybrid/OpenMP Help? 

•  Send larger MPI 
messages 
－ small messages are 

expensive 
•  No intra-node 

messages 
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Why Does Hybrid/OpenMP Help? 

•  There may be 
scalability limits to 
domain decomposition 

•  OpenMP adds fine 
granularity (larger 
message sizes) and 
allows flexibility of 
dynamic load 
balancing. 

•  Some problems have 
two levels of 
parallelism  
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What are the Benefits of OpenMP? 

•  Uses less memory per node 
•  At least equal performance 
•  Additional parallelization may fit algorithm well 
－  especially for applications with limited domain parallelism 

•  Possible improved MPI performance and load 
balancing 
－ Avoid MPI within node 

•  OpenMP is a standard so code is portable 
•  Some OpenMP code can be added incrementally 
－ Can focus on performance-critical portions of code 

•  Better mapping to multicore architecture 
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What are the Disadvantages of 
OpenMP? 

•  Additional programming complexity 
•  Can be difficult to debug race conditions 
•  Requires explicit synchronization 
•  Additional scalability bottlenecks:  
－ thread creation overhead, critical sections, serial 

sections for MPI 
•  Cache coherence problems (false sharing) and data 

placement issues 
－ Memory locality is key... 
－ but OpenMP offers no direct control 
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Are There Additional Solutions? 

•  Sometimes it may be better to leave cores 
idle 
－ Improves memory capacity and bandwidth 
－ Improves network bandwidth 

•  However, you are charged for all cores 
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Typical OpenMP Program 

•  Execution begins with a single “Master 
Thread” 

•  Threads “fork” at each parallel region, join at 
end 
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Can I Debug OpenMP and Hybrid 
Codes? 

•  Difficult because of race 
conditions – imprecise 
and non-reproducible 
ordering of memory 
read/store operations 

•  Common bugs: 
－  incomplete or misplaced 

synchronization 
－  improper scoping 
－  occur often as a result of 

converting serial code  
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Screenshot of a Totalview 
debuggging session with 
a hybrid MPI / OpenMP 
code. 
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Can I Analyze OpenMP 
Performance? 

Yes: Use CrayPat Tool 
module load xt-craypat 

cd $SCRATCH/... 
make (e.g., ftn –o my.exe mycode.f) 
pat_build –g omp 

qsub ... 
aprun –n #_cores my.exe+pat!
pat_report datafile.xf  > out!
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What are the Disadvantages of 
OpenMP? 

•  Additional programming complexity 
•  Can be difficult to debug race conditions 
•  Requires explicit synchronization 
•  Additional scalability bottlenecks:  
－ thread creation overhead, critical sections, serial 

sections for MPI 
•  Cache coherence problems (false sharing) and data 

placement issues 
－ Memory locality is key... 
－ but OpenMP offers no direct control 
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What’s All This About Locality? 

•  Remember: All memory 
accesses on the node 
happen transparently  
－  but remote access takes longer 

•  Need NUMA control - 
memory and process 
affinity 
－ Improve performance 
－ Eliminate performance 

variability 
－ Avoid resource 

contention 

Where do processes, threads, and 
their memory go on the Hopper 

node? 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 
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Memory Affinity via “First Touch”  

•  Memory is mapped to the NUMA node containing the 
core that first touches that memory. 

•  “Touch” means write (not allocate) 
•  Solution (Golden Rule): have each thread initialize 

the points that it will later be processing  
－  Initialize memory immediately after allocating it 
－  Initialize memory in parallel regions, not in serial code 
Recommended: Tutorial M16 at SC10 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 
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Si=AXi+Yi   Performance 

Measurements by 
Hongzhang Shan 
(CRD)    
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More on Locality & Other Factors  
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RUNNING ON HOPPER 
Part 2 
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Running on Hopper 

•  Submit a job to the batch system requesting 
resources 
－ Interactive 
－ Batch 
－  #PBS –l mppwidth = Total_Number_of_cores_needed 

•  Launch executable with aprun!
－ Need to ensure that aprun command is consistent 

with batch resources requested 
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Running on Hopper 

•  You must recompile 

－ Franklin and Hopper Phase 1 binaries include 
SeaStar 
－ Hopper Phase 2 binaries need Gemini 

=> you must recompile 
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aprun: Example 1 

•  Pure MPI application, using all cores in a 
node:   32 MPI tasks on 32 cores 
#PBS –l mppwidth=32!
aprun –n 32 a.out!

Franklin 

8 nodes, fully-populated,  
(32 cores charged against allocation) 

H
opper 

2 nodes, not fully-populated 
NOTE: you are charged for all the cores allocated  
(48 cores charged against allocation) 
(8 cores on one node, 24 on other node is default) 

On Hopper, you can request 
actual number needed; 
batch system will allocate  
required number of nodes.  
NOT RECOMMENDED!!! 
Request full nodes  
(#PBS –l mppwidth=48) 
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Important Note About Defaults 

•  Non-local Hopper NUMA node memory is not 
available unless your combination of #PBS 
directives and aprun command request it. 

•  Example: If you use 1/2 the cores in the node, 
and all are on two NUMA nodes only 1/2 the 
Hopper node memory is available. 

•  If you don’t fully populate the node be sure to 
spread your cores over all NUMA nodes 
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aprun: Example 2 

•  Underpopulate nodes by 1/2 to save memory, 
48 MPI tasks 

•    

 Requires 48 tasks ÷ 2 tasks per node X 4 cores per node 
 = 96 cores (24 nodes * 4 cores per charged against allocation) 

 Requires 48 tasks ÷ 12 tasks per node X 24 cores per node 
 = 96 cores (4 nodes * 24 cores per charged against allocation) 

#PBS –l mppwidth=96!
aprun –n 48 –N 2 a.out!

Franklin 
H

opper #PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 3 a.out!
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aprun NUMA options 

•  Important to ensure that MPI tasks are 
assigned separate NUMA nodes when 
underpopulating the node 

aprun –S cores!

H
opper 

Cores per NUMA node; 1-6, default 6;  

aprun –sn nodes!
NUMA nodes per Hopper node; 1-4, no default: 

aprun –sl node-list!

NUMA node list; 0,1,2,3  comma or hyphen delimited: 
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aprun: Example 2 

•  Underpopulate nodes by 1/2 to save memory, 
48 MPI tasks 

 Requires 48 tasks ÷ 12 tasks per node X 24 cores per node 
 = 96 cores (4 nodes * 24 cores per charged against allocation) H

opper 

#PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 3 a.out!

#PBS –l mppwidth=96!
aprun –n 48 –N 12 –S 4 a.out!

optimal 

avoid 
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aprun NUMA options 

aprun –cc [ cpu | numa_node | none ]!

H
opper 

CPU affinity: Bind processes / threads 
 - to each core within a NUMA node, or  
 - to any core within a NUMA nodes or  
 - don’t bind at all; 

-cc is the default for MPI codes 

aprun –ss!

Allocate memory only local to the NUMA node; do 
not use if underpopulating  
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MPI, OpenMP and aprun 

•  Use both the OMP_NUM_THREADS 
environment variable + aprun –n -d 
options 

•  aprun –n # option specifies # of MPI 
processes 

•  aprun –d # option specifies number of 
threads per MPI task. 
－ each of the “-n” MPI processes creates “-d” 

threads 
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aprun: Example 3 

•  Hybrid OpenMP / MPI 

Franklin 

92 MPI tasks, 4 OpenMP threads each: 
Total cores = 92 tasks     1 MPI task per node X 4 cores per 
node = 368 (92 nodes)  

#PBS mppwidth=368!
export OMP_NUM_THREADS=4!
aprun –n 92 –N 1 –d 4 a.out!

H
opper 

92 MPI tasks, 6 OpenMP threads each: 
Total cores = 92 tasks      4 MPI tasks per node X 24 cores 
per node = 552 (23 nodes) 

#PBS mppwidth=552!
setenv OMP_NUM_THREADS 6!
aprun –n 92 –N 4 –S 1 –d 6 a.out!
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Some Error Messages 

•  Claim exceeds reservation's node-count 
－ On Franklin usually caused by requesting fewer 

cores (#PBS –l mppwidth=#) than aprun needs 
－ On Hopper may result from improperly spreading 

processes and threads over NUMA nodes 

•  Claim exceeds reservation's memory 
－ On Hopper; happens because having a compute 

node reserved for your job does not guarantee 
that you can use all NUMA nodes.  
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PERFORMANCE OF HOPPER 
Part 3 

“Prediction is difficult - especially for the 
future.” 

- Y. Berra 

“The future will be just like the  
present - only more so.” 

- Groucho Marx 
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What Performance Should I Expect on 
Hopper Phase-2? 

Processor Cores Frequency 
(GHz) 

Peak 
(GFLOPS) 
per Core 

Peak 
(GFLOPS) 

per 
Processor 

Bandwidth 
(GB/s) 

Balance 
(Bytes/
Flop) 

Hyper-
Transport 

Technology 

Memory 
Technology 

Barcelona 
(Cray XT4) 

4 2.3 9.2 36.8 12.8 0.34 3x  
2GT/s 

2x DDR2 
667 per 4 

cores 

Magny 
Cours 
(Cray XT6) 

12 2.1 8.4 100.8 42.6 0.42 4x 
 6.4 GT/s 

2x DDR3 
1333 per 6 

cores 
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What Performance Should I Expect on 
Hopper Phase-2? 

PERFORMANCE DATA ARE PROPRIETARY – 
NOT TO BE PUBLISHED IN ANY FORM 

Cray XT6 PERFORMANCE DATA ARE FROM 
AN EARLY VERSION OF THE SYSTEM 
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What Performance Should I Expect on 
Hopper Phase-2? 

PRELIMINARY PERFORMANCE DATA: 
PROPRIETARY – NOT TO BE PUBLISHED IN 

ANY FORM 
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NERSC Application Benchmarks 

Code Language Description 
CAM F77 Community Atmosphere Model, “D” 

grid 
GAMESS F77 Quantum Chemistry RHF gradient 

MP2 
GTC F90 Particle in Cell – Fusion turbulence 
IMPACT-T F90 + 

FFTW 
Particle in Cell – Accelerator design 

MAESTRO F90 (C) Low Mach number flow 
astrophysical 

MILC C Lattice QCD 
PARATEC Fortran + 

FFTW + 
BLAS 

Plane Wave Density Functional 
Theory 

PMEMD F90 Particle Mesh Ewald Molecular 
Dynamics  
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Application Benchmark Times  
(run times in seconds) 

(This slide intentionally left blank in  
published version of the slides) 



51 

Summary 

•  Hopper is performing well.  

•  Even for codes performing well you would be well 
advised to consider an alternative to MPI-only 
programming. 

•  The key to success is likely to be careful 
consideration of locality. 

•  NERSC can help. 
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Low swirl burner combustion simulation.  Image shows flame radical, OH (purple surface and 
cutaway) and volume rendering (gray) of vortical structures. Red indicates vigorous burning 
of lean hydrogen fuel; shows cellular burning characteristic of thermodiffusively unstable fuel.  
Simulated using an adaptive projection code. Image courtesy of John Bell, LBNL. 
Hydrogen plasma density wake produced by an intense, right-to-left laser pulse. Volume rendering of 
current density and particles (colored by momentum orange - high, cyan - low) trapped in the plasma wake 
driven by laser pulse (marked by the white disk) radiation pressure.  3-D, 3,500 Franklin-core, 36-hour 
LOASIS experiment simulation using VORPAL by Cameron Geddes, LBNL. Visualization: Gunther Weber, 
NERSC Analytics. 

False-color image of the Andromeda Galaxy created by layering 400 individual images 
captured by the Palomar Transient Factory (PFT) camera in February 2009. NERSC systems 
analyzing the PTF data are capable of discovering cosmic transients in real time.   Image 
courtesy of Peter Nugent, LBNL. 

Numerical study of density driven flow for CO2 storage in saline aquifers. Snapshot of CO2 
concentration after convection starts.  Density-driven velocity field dynamics induces convective 
fingers that enhance the rate by which CO2 is converted into negatively buoyant aqueous phase, 
thereby improving the security of CO2 storage.  Image courtesy of George Pau, LBNL 

Simulation of a global cloud resolving model (GCRM). This image is a composite plot showing 
several variables: wind velocity (surface pseudocolor plot), pressure (b/w contour lines), and a 
cut-away view of the geodesic grid. Image courtesy of Professor David Randall, Colorado State 
University. 

The exciton wave function (the white isosurface) at the interface of a ZnS/ZnO nanorod. 
Simulations performed on a Cray XT4 at NERSC, also shown. Image courtesy of Lin-Wang 
Wang, LBNL. 




