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WERSC The NERSC Hopper System
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 Cray XT6, 6,392 nodes, 153,408 cores, 2.1-
GHz AMD Magny-Cours Opteron processor

 Cray Gemini Interconnect
+ 1.25 Petaflops peak performance
« 2-PB disk Lustre filesystem
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. What is Different About Hopper?
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The new Hopper
Phase-2 system will
have 24 cores per
node.

AMD Magny-
Cours Die

* Franklin has only four. ~.

 The way that you use
the new Hopper
system may have to
change as a result.
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WERSC What Else is Different ?
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 Less memory per core: 1.33 GB vs. 2.0 GB

—8 GB per node (Franklin);
—32 GB per node (Hopper, 6,008 nodes)

o “OOM killer terminated this process” error
OOM = Out of Memory

* (Hopper will have 384 larger-memory nodes
64 GB.)
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438 Why Less Memory Per Core?

NATIONAL ENERGY RESEARCH

CCCCCCCCCCCCCCCCCCCCCCCCC

« Technology trends:
— Memory density 2X every 3 yrs; processor logic every 2
— Storage costs ($/MB) drops more gradually than logic costs

Evolution of memory density 100
Cost of Computation vs. Memory
10000 = * 1Mb 10 .
o0 o = 4Mb \ource: David Turek, IBM
= .‘;D—'“ 2X/3yrs 16Mb 1
2 10 - 64Mb
= x 128Mb 0.1
=) 4X/3yrs
S 10 ‘ * 256Mb
» [512Mb 0.01
1985 1990 1995 2000 2005 2010 2015 2Gb : %% %% % Y
Year mass production starts 4Gb B Dollars/Mbyte A Dollars’MFLOP

The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

« NERSC optimized the Hopper system for a diverse workload
— fixed budget; memory cost is already a significant portion.
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WERSC What Else is Different ?
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+ “Deeper” Memory Hierarchy in Hopper

Memory Hierarchy Levels

Faster
1000s of Bytes B eters 1
~2 NS per access ——
J L
MBytes Caches
~10s ns per access
<
<
Gbytes emaory
~100ns ns per access Memory
Memory
< -
PBytes Disk !
~MmSs per access Larger
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 “Deeper” Memory Hierarchy
— NUMA: Non-Uniform Memory Architecture
— All memory is transparently accessible but...

— Longer memory access time to “remaote” memory— -
— A process running on NUMA node 0 accessing NUMA
node 1 memory can adversely affect performance.

2xDDR1333 channel
21.3 GB/s

v/—\‘

3.2GHz x16 lane HT
12.8 GB/s bidirectional

3.2GHz x8 lane HT
6.4 GB/s bidirectional

w‘"‘""ﬁ,’; U.S. DEPARTMENT OF Offlce Of

& ENERGY science Hopper Node /_\‘




EEEEEEEEEEEEEEEEEEEEEE
CCCCCCCCCCCCCCCCCCCCCCCCC

Core

Core

Core Core

L2

L2

L2 L2

Shared L3
1 1

Cross-bar

Mem Cont (x2)

Franklin: Uniform Memory Architecture
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Hopper: Non-Uniform Memory Architecture
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WERSC What About the Future?
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10,000,000

 The technology trends point to | oy /
— Little or no gain in clock speed or B — :
performance per core;
— Rapidly increasing numbers of cores per .
node;

100

— Decreased memory capacity per core
(possible slight increase per node)

— Decreased memory bandwidth per core

— Decreased interconnect bandwidth per o v e e 1o e 200 00 201
core

— Deeper memory hierarchy

10

1

 Hopper is the first example at
NERSC but surely not the last
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e Will My Existing Code Run?
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* Probably, yes, your MPI code will run. \J

 But the decrease in memory available per core may
cause problems ...
— May not be able to run the same problems. R

— May be difficult to continue “weak”
scaling (problem size grows in proportion to
machine size).

* (and your MPI code might not use the machine most
effectively.)

 Time to consider alternative programming models?
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What is NERSC Doing
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 NERSC recognizes the huge investment in MPL.

* But given the technology trends...

 We suggest a move towards programming models
other than pure MPI

A good place to start: MPI + OpenMP (“Hybrid”)

— MPI for domain decomposition and OpenMP threads within a
domain

— Suggested primarily to help with memory capacity

-]
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- TTT Isn’t This the Same as Clusters of
L S M P S ( .Ca 2 002 ) ?

« SMP: Symmetric Multiprocessor
— aka clusters, Networks of Workstations, CLUMPS, ...

* In some ways the issues are the same:
—Memory architecture is the key

« But chip multiprocessors have vastly
improved inter-core latencies and bandwidth.

* With today’s trends we have no choice.
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Aersc What are the Basic Differences

A

Between MPI and OpenMP?

SCIENTIFIC COMPUTING CENTER

» Program is a collection of processes.

Private . ]
|| || memory * Usually fixed at startup time
12 s 14 11  Single thread of control plus private
— ' receive Pn,s >: address space -- NO shared data.
y=.s.| [i2 3 //" T\ [ . Proc.esses. communicate by explicit send/
receive pairs
v “ » Coordination is implicit i
(P1) send P1,s plicit in every
‘ @) communication event.
JlGtEeEe « MPI is most important example.

Message Passing Model

Shared Address Space Model

* Program is a collection of threads.
Shared memory . Canb dd icall
s ._—\ = an be created dynamically.
y=.S.. z — - « Threads have private variables and
- i Private T shared variables
( memory * Threads communicate implicitly by

LS
7 - writing and reading shared variables.

. * Threads coordinate by synchronizing
K.Yelick, C5267 UCB on shared variables /“\l
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. - TETS Why are MPI-only Applications
SCIENTIFIC COMPUTING CENTER M em Ory I n ef f i Ci en t?

MPI codes consist of n copies of the program

« MPI codes require 1 1
. . RREER GlGlGlc
application-level memory S g [ G
for messages Tl e e [T T e
G|G|G|G G|G|G|G

— Often called “ghost” cells

MPI codes require AYA'
system-level memory i‘

for messages Network G[G[G[G
— Assuming the very common \I \ \I

QOO D
QOO D

QOO D

QODO

synchronous/blocking style

. System buffers crered]
°e ENERGY science 1“
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4333 Why Does Hybrid/OpenMP Help?
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Hybrid: 4 MPI tasks,
6 threads per MPI

Iy I 5 [T [
01 00 [ e e
O O o] o
UL L e W T
DO O e e el e
IO O e Lo o
“Pure” MPI  “Pure” OpenMP
G|G|G|G| _ G|G|G|G| _
G G G G
G G 3G G G|G|G|G|G|G|G|G|
G G G G G G
G G G G G L G
SEEE EEEE G Iete G
G . G
G G
G(?GG GGwGG G G
G G G G g g
S T SR S EESEETE
G G G G
G|G|G|G G|G|G|G
Distributed memory Shared memory
subgrid distribution subgrid distribution

Figures from Kaushik Datta, Ph.D. Dissertation, UC Berkeley, 2009
: Office of
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 Reduced
Memory
Usage:

—Fewer
instances of
your program
on the node

—Eliminate
some ghost
cell memory
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L4axX3 Why Does Hybrid/OpenMP Help?
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{_i cannc + Send larger MPI
o, e messages
CunnnclilcuunnG —small messages are
Eﬁ&&&&lc cle : Eggg'gg Ggggl expensive
N S  No intra-node
messages

Time
: Slope = cost per word = 1/BW

} t. = startup cost

Message Size

e
5
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Em Why Does Hybrid/OpenMP Help?
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 There may be
scalability limits to
domain decomposition

 OpenMP adds fine

granularity (larger
message sizes) and
allows flexibility of
dynamic load
balancing.

« Some problems have

two levels of



Em What are the Benefits of OpenMP?
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 Uses less memory per node
« At least equal performance
- Additional parallelization may fit algorithm well
— especially for applications with limited domain parallelism

 Possible improved MPI performance and load
balancing
— Avoid MPI within node

« OpenMP is a standard so code is portable

« Some OpenMP code can be added incrementally
— Can focus on performance-critical portions of code

« Better mapping to multicore architecture
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Mer=c What are the Disadvantages of
e e Open MP?

« Additional programming complexity
« Can be difficult to debug race conditions
* Requires explicit synchronization

- Additional scalability bottlenecks:

— thread creation overhead, critical sections, serial
sections for MPI

« Cache coherence problems (false sharing) and data
placement issues
— Memory locality is key...
— but OpenMP offers no direct control

R o P
1 ENERGY Science 1“

EEEEEEEEEEE



L4EZXE Are There Additional Solutions?

NATIONAL ENERGY RESEARCH
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« Sometimes it may be better to leave cores
idle
—Improves memory capacity and bandwidth
—Improves network bandwidth

 However, you are charged for all cores

<y ; A
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e Typical OpenMP Program
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Execution begins with a single “Master
Thread”

Threads “fork” at each parallel region, join at
end MPI init

Start
threads

<— Merge
threads

o MPI finalize /\l A
EEEEEEEEEEEE ice o “a frreeeer 1]
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. - TETS Can | Debug OpenMP and Hybrid
SCIENTIFIC COMPUTING CENTER CO des ?

File Edit View Group Process Thread ﬁc'tion Point  Tools  Window ﬂelpl o = g g
Group (Control) - | G0|Halt|Next|SteplOutJ £ 70| Nextl| Stepl | ] P_JE:JUE_I leflC!J!t beca_use Of _race
conditions — imprecise

Process 1 (3081441): md-omp (At Breakpomﬂ
wrmmmms  Thread 1.4 (4) (Stopped) R

Stack Trace £ Stack Frame i and non-re roducible
compute’ 92 compute, FP=2000233525 Function "compute’ 92 compute": A p
compute (thread 1.1) No arguments. = -
| OtsParticipateInTeam, FP=20002335 Block "$hl#$hl":
4 | OtsSlaweDriver, FP=200023357e0 KIN (F5): 0 orderlng Of memory
| _thdBase, FP=20002335c00 POT (F4): 248.586779550936 -
3 fll..1C2.,, 376 (xo0oomi) fy read/store operations
Function compute’_92_compute in md-omp.f el
I$omp parallel do 5 ) A
93 ISomp& default(shared) d Common bugs:
94 I$omp& private(i, i, k,rijld)
95| I$omp& reductioni+ : pot] kin) A .
T do i=1,np — incomplete or misplaced
97 I compute potentlal energy and forces . .
A synchronization
100 if (i .ne. ) then o . .
101 call dist{nd, box, pos(l,1i),pos(l,3),rij,d) —_
0z I attribuge half of the potential energy to particle 'j Improper scoplng
03 pot = pot|+ 0.5*v{d) ft It f
04 do k=1,nd —
=< Foeir] iy - rid (0 #avid) /a OoCcCur orten as a resuit o
106 enddo H H
107 endi converting serial code
108 enddo
109 I compute kineti¢ energy
in = kin + {nd, vel(l 1), vel(l, 1)) A
~ ! L
Threads (3) 12 Action Paints
1.1 T in compute’ _92_compute A 1 md-omp. £#110 compute’ _9L3
1.2 1 in compute’ 92 compute
1.3 T in compute’ 92 compute
AT in compute’ 92 compute
=T T Yon_thread
1.-2 T in _ hstTransferRegisters
1.-3 T in _ hstTransferRegisters |z :

~
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Screenshot of a Totalview
debuggging session with
a hybrid MPI / OpenMP

code.
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X prun<sphot>.0

File Edit View Group Process Thread ActionPoint Tools Window

Help |

Group (Control) —-| @lHalt|Next|Step|0ut

{ e
i

2 (15805615): prun<sphot={0|

[Thread 2.3 (3] (Stopped)

Next stepl]| | P-|Ps| T/ T+
d

Oy O O

IX| prun<sphot>.0 \

File Edit View Group /Erocess Thread Action Point\TooI_s Window

Help

Group (Control) — | élHaltheﬂlSteplOut

Fa
Beviz
HIEEY |

ro| Nel|stepl] | P{Pe|T| T

Pracess 2 (15805615): prun<sphot={0)(Stoppet

000 OpenMP Threads

Wi Thread 2.1 {1)|(Stopped) <Trace Trap

i |!.

[X| prun<sphot>.1

MPI Processes

File Edit View E_&i\'\oup Process Thread Action Point To _3/ Window

Help

Group (Control) -:\‘1\ @l Halt| Next| Stepl Out

s
Beviz
Einsd

TEN:
HEY

000

X| prun<sphot>.1

D'étl_yStH ﬂﬁlllk]

I File Edit View Group \_Erocess Thread Action Point/ Tools Window

Help

Group (Control) -| Gol\l—lalthextlStepIOut

a
i
SR

xtl| Stepl| | P-|P+|T-| T+

Process 3% 15805610): prun<sphot={ 1{(St

Ne
0

ed)

Stack Trace

hread 3.3 (3)|(Stopped
ST

Stack Frame

sphot’ 142 sphot, FP=20001924fh0 Function "sphot’
== sphot (thread 3.1) No arquments.
_0OtsParticipateInTeam, FP=20001925 Block "S$hl":
_0OtsSlaveDriver, FP=200019257e0 RUNCOUNT:
_ thdBase, FP=20001925c00 I:
I:
ICT:
MYSEED:
NTHRRUNS :
NUMTHREADS :
= OFFSET:
H o1 o0y .

142_sphot":

0 {0x00000000)
0 {0x00000000)
0 {0x00000000)
0 {0x00000000)
(integer{4))

1 {0x00000001)
2 {0x00000002)
0 {0x00000000)
n

Function sphot”_142_sphot in sphot.f

[ 149 1$0MP+ FIRSTPRIVATE

T

T
ﬁﬂﬂ
oy

nyStream = -1

q

DO 1000 ict =

Nl
111!1!
)

=
[=a}
o

|

148 1SOMP+ numThreads, nThrRuns )

( mySeed )

| $0MP+ REDUCTION (+:runCount)

thrID = OMP_GET THREAD NUM() + 1
rumThreads = OMP_GET NUM_THREADS ()
nThrRuns = nRunsPerMPItask / numThreads
ithRun = MPIid*nRunsPerMPItask + thrID

1, nThrRuns

CALL second{tl)

CALL execute(ithRun, myStream, mySeed, nescgp, enesc, wecut,

~
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Can | Analyze OpenMP
SCIENTIFIC COMPUTING CENTER P erf Or m a n Ce ?

Yes: Use CrayPat Tool
module load xt-craypat

make (e.g., ftn —o my.exe mycode.f)
pat build

aprun —n # _cores my.exetpat
pat report datafile.xf > out

Office of

SR U.S. DEPARTMENT OF
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e r=c What are the Disadvantages of
e Open MP?

data
placement issues

— Memory locality is key...
— but OpenMP offers no direct control

~
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L4aZx33  What's All This About Locality?
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Remember: All memory
accesses on the node
happen transparently

— but remote access takes longer BFYETTUEA O [ PFEERVETT
' MemorvaBL L w. | B Memora
E Ju
Need NUMA control - - CETT B s
\ D = \4 |
memory and process  Memon— | [li" [ = Memony
aff inity Where do processes, threads, and
—1Im prove p erformance their memor)I/7 g(ojeo?n the Hopper
—Eliminate performance
variability
— Avoid resource
contention S
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Em Memory Affinity via “First Touch”
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Memory is mapped to the NUMA node containing the
core that first touches that memory.

“Touch” means write (not allocate)

Solution (Golden Rule): have each thread initialize

the points that it will later be processing

— Initialize memory immediately after allocating it
— Initialize memory in parallel regions, not in serial code
Recommended: Tutorial M16 at SC10

“Memonll—BEENE=— Vem

 Memonull—l _w- | B Memorn
NI g

- =0 T —

| | = ‘

 Memonu ———lI—1——— Vemon

-]
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NATIONAL ENERGY RESEARCH

“®=TouchByAll
“®TouchByOne

iy
o

Bandwidth GB/s
S <]

[y
o

0 T T T 1 1
1234567 8 9101112131415161718192021222324
No. of OpenMP Threads

-

Measurements by
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L4ZxX3 More on Locality & Other Factors

EEEEEEEEEEEEEEEEEEEEEE
CCCCCCCCCCCCCCCCCCCCCCCCC

Wednesday, Oct. 20th

Time (PDT) Topic Presenter
Training Q00 Avrivsm At NIER OO
Tpm Ask questions to Cray and

M nbnéé
wian

Best Practices for Hybrid Nick Wright

OpenMP/MPI Programming = \
on Hopper rocc]
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Part 2

RUNNING ON HOPPER

B
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L ASGEEE Running on Hopper

NATIONAL ENERGY RESEARCH
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 Submit a job to the batch system requesting

resources
—|Interactive

—Batch
— #PBS —| mppwidth = Total Number _of cores needed

 Launch executable with aprun

—Need to ensure that aprun command is consistent
with batch resources requested

oo A
ZER U DEPARTMENT OF Office of rﬁ'}l I
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L B Running on Hopper

NATIONAL ENERGY RESEARCH
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* You must recompile

—Franklin and Hopper Phase 1 binaries include
SeaStar

—Hopper Phase 2 binaries need Gemini

=> you must recompile

&

Office of

U.S. DEPARTMENT OF
ENERGY Science
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piEs aprun: Example 1

NATIONAL ENERGY RESEARCH
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 Pure MPI application, using all cores in a
node: 32 MPI tasks on 32 cores

#PBS —1 mppwidth=32

aprun —n 32 a.out On Hopper, you can request
~—actual number needed;

batch system will allocate

1
- required number of nodes.
Q -

5 | 2 meees, itliypeipuies] . NOT RECOMMENDED!!
= (32 cores charged against allocation)

= Request full nodes

> (#PBS - mppwidth=48)
éE 2 nodes, not fully-populated

© NOTE: you are charged for all the cores allocated

8 (48 cores charged against allocation)

4

(8 cores on one node, 24 on other node is default)

£ ""'“’e’.,‘{ U.S. DEPARTMENT OF Office of l’:'—l'>| I/I}
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L4AxEE Important Note About Defaults

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

 Non-local Hopper NUMA node memory is not

available unless your combination of #PBS
directives and aprun command request it.

 Example: If you use 1/2 the cores in the node,

and all are on two NUMA nodes only 1/2 the
Hopper node memory is available.

 If you don’t fully populate the node be sure to
spread your cores over all NUMA nodes

s : A
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e aprun: Example 2

NATIONAL ENERGY RESEARCH
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 Underpopulate nodes by 1/2 to save memory,
48 MPI tasks

Requires 48 tasks + 2 tasks per node X 4 cores per node

§ = 96 cores (24 nodes * 4 cores per charged against allocation)
= #PBS —1 mppwidth=96

aprun —n 48 —N 2 a.out
T Requires 48 tasks + 12 tasks per node X 24 cores per node
§ = 96 cores (4 nodes * 24 cores per charged against allocation)
® #PBS —1 mppwidth=96

aprun —n 48 —N 12(-S 3 ja.out

-]

3“"*%% U.S. DEPARTMENT OF Office of l':'—">| |/|}
ENERGY Science 1‘

EEEEEEEEEEE




38

W ERSC aprun NUMA options

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

* Important to ensure that MPI tasks are
assigned separate NUMA nodes when
underpopulating the node

Cores per NUMA node; 1-6, default 6;
aprun —S cores

aprun —sn nodes

JoddoH

NUMA nodes per Hopper node; 1-4, no default:

NUMA node list; 0,1,2,3 comma or hyphen delimited:

aprun —s1 node-1list

Office of
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piEs aprun: Example 2

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

 Underpopulate nodes by 1/2 to save memory,
48 MPI tasks

Requires 48 tasks =+ 12 tasks per node X 24 cores per node
= 96 cores (4 nodes * 24 cores per charged against allocation)

#PBS —1 mppwidth=96

00 opti
aprun —n 48 —N 12/—S 3\a.out optimal

JoddoH

#PBS —1 mppwidth=96 |
aprun —n 48 —N 12 —S 4 a.out avoid

-]
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W ERSC aprun NUMA options

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

CPU affinity: Bind processes / threads
- to each core within a NUMA node, or
- to any core within a NUMA nodes or
- don’t bind at all;

-cc is the default for MPI codes

aprun —cc [ cpu | numa node | none ]

JaddoH

Allocate memory only local to the NUMA node; do
not use if underpopulating

aprun —ss

Office of

SR U.S. DEPARTMENT OF
a ENERG Y Science
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A MPI, OpenMP and aprun

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

 Use both the OMP_NUM_THREADS

environment variable + aprun —m -d
options

e aprun —n # option specifies # of MPI
processes

e aprun —d # option specifies number of
threads per MPI task.

—each of the “-n” MPI processes creates “-d”
threads

Office of

SR U.S. DEPARTMENT OF
a ENERG Y Science



piEs aprun: Example 3
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GY RESEARCH
PUTING CENTER

 Hybrid OpenMP / MPI

uipue.

92 MPI tasks, 4 OpenMP threads each:

Total cores = 92 tasks — 1 MPI task per node X 4 cores per
node = 368 (92 nodes)

#PBS mppwidth=368
export OMP NUM THREADS=4
aprun —n 92 —N 1 —d 4 a.out

92 MPI tasks, 6 OpenMP threads each:
Total cores = 92 tasks — 4 MPI tasks per node X 24 cores

per node = 552 (23 nodes)

#PBS mppwidth=552

setenv OMP NUM THREADS 6

aprun —n 92 —N 4(—-S 1 \—-d 6 a.out

2 U'STDEPARTMENT OF Office of
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e Some Error Messages

EEEEEEEEEEEEEEEEEEEEEE
CCCCCCCCCCCCCCCCCCCCCCCCC

« Claim exceeds reservation's node-count

—On Franklin usually caused by requesting fewer
cores (#PBS -| mppwidth=#) than aprun needs

—On Hopper may result from improperly spreading
processes and threads over NUMA nodes

« Claim exceeds reservation's memory

—On Hopper; happens because having a compute
node reserved for your job does not guarantee
that you can use all NUMA nodes.

43
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“Prediction is difficult - especially for the
future.”

- Y. Berra

“The future will be just like the
present - only more so.”

Part 3 - Groucho Marx

PERFORMANCE OF HOPPER

Office of

y‘i‘e,,,_ U.S. DEPARTMENT OF
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, What Performance Should | Expect on
. A— Hopper Phase- 27?7

SCIENTIFIC COMPUTING CENTER

Processor Cores Frequency Peak Peak Bandwidth Balance Hyper- Memory
(GHz) (GFLOPS) (GFLOPS) (GB/s) (Bytes/ Transport Technology
per Core per Flop) Technology
Processor
Barcelona 4 2.3 9.2 36.8 12.8 0.34 3x 2x DDR2
(Cray XT4) 2GT/s 667 per 4
cores
Magny 12 2.1 8.4 100.8 42.6 0.42 4x 2x DDR3
Cours 6.4 GT/s 1333 per 6
(Cray XT6) cores
y , U.S. DEPARTMENT OF Office Of r:'—rr\rrl |/|\|
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, What Performance Should | Expect on
e H opper Phase-2?

PERFORMANCE DATA ARE PROPRIETARY —
NOT TO BE PUBLISHED IN ANY FORM

Cray XT6 PERFORMANCE DATA ARE FROM
AN EARLY VERSION OF THE SYSTEM

-
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, What Performance Should | Expect on

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

MPI Unidirectional Bandwidth

5000

Hopper Phase-2?

MPI Unidirectional Latency

14 r y
w» 12
4 a
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w 6
E a
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2 L 2 2 o w & o
0
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Message Size (Bytes)

MPI Bidirectional Bandwidth
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L AxEa NERSC Application Benchmarks
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Code Language Description

CAM F77 Community Atmosphere Model, “D”
grid

GAMESS F77 Quantum Chemistry RHF gradient
MP2

GTC FO0 Particle in Cell — Fusion turbulence

IMPACT-T F90 + Particle in Cell — Accelerator design

FFTW

MAESTRO F90 (C) Low Mach number flow
astrophysical

MILC C Lattice QCD

PARATEC Fortran + Plane Wave Density Functional
FFTW + Theory

BLAS
PMEMD F90 Particle Mesh Ewald Molecular
g“""“e,,% u.s. DEPARTMENTOV Dynamlcs r:rrr |/|}
. @ ENERGY soonce
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fi’w U.S. DEPARTMENT OF
£ B
YW ENERG

Application Benchmark Times
(run times in seconds)

(This slide intentionally left blank in
published version of the slides)
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W ERSC Summary

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

 Hopper is performing well.

« Even for codes performing well you would be well
advised to consider an alternative to MPI-only
programming.

 The key to success is likely to be careful
consideration of locality.

« NERSC can help.
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FILESYSTEMS

Home direciories are giobal, meaning
common across all NERSC systems.
Accessible from login and compute nodes.
Quota is 40 GB. Refer to your home space in
scripts as $HOME.

Scratch directories are configured for paraliel
110, accessible from login and compute nodes,
in Iscratchi/scratchdirs/userlD

and [/scratch2/scratchdirs/userlD. Refer to
these in scripts as $SCRATCH1 and
$SCRATCH2. Quota is 2 TB but purging will
occur. Use the NERSC web form if more
space is temporarily needed.

Project directories are available via the
NERSC Global Filesystem (NGF); use these to
share data across NERSC platforms or
amongst users in a project. Use a NERSC web
form to request (under Global File System).

HIGH PERFORMANCE

STORAGE SYSTEM (HPSS)
Use HPSS to back up all your code and data.
Access is via ftp, pftp, htar, or hsi to
archive.nersc.gov. Use NIM password or
generate a token (stored in ~/.netrc) then no
password required. The hsi utility uses syntax
similar to Unix for most commands; additional
commands include add, cdls, cput, dump,
get, Imkdir, mdelete, mget, mput, put,

Several ways of using hsi:

- From a command line: Just type hsi, wait for
HPSS prompt, type commands, & exit to
end.

- Multiple commands at once: hsi "mkdir
foo; cd foo; put data_file”

- From input file: hsi "in input_file™

- From or to standard input or output:

tar cvf - _ | hsi put - : d_tar

hsi get - - d.tar | tar xvf -

Hopper QuickPadassace v1.0 OctcteardO)

NERSC CONSULTING

Left to right, top: Katie Antypas (User Services
Group Leader), Richard Gerber, Helen He, Woo-
Sun Yang, Harvey Wassemman; bottom: Zhengp
Zhao, Viraj Paropkar, Mike Stewart, David
Tumer, Eric Hjort

consult @ nersc.gov

510 -486 -8611 or
800-66-NERSC, menu option 3
http://www.nersc.gov

NERSC ACCOUNT MANAGEMENT
(Passwords, New Users)

Clayton Bagwell, Mark Heer

510 -486-8612 or

800-66-NERSC, menu option 2
Online Account Management for
all users: http://nim_nersc.gov

=1=

QUICK REFERENCE CARD

NERSC Hopper

Complete documentation available
on http://www.nersc.gov

Hopper OVERVIEW

The NERSC Hopper system, in full service early
2011, will have 1.25 Petaflops peak performance;
6,392 nodes, each with two 2.1-GHz Opteron 12-
core processors, 153,408 total cores, 24 cores
per node, 1.33 GB/core; Gemini interconnect in
3-D torus topology: operating system is the Cray
Linux Environment, with full Linux on the eight
login nodes and Compute Node Linux micro-
kemel on the compute nodes.

HOW TO LOG IN
Log in to hopper with:

ssh [ user] hopper.nersc.gov

Use -1 user only if user ID on your local system is
different from your user ID on Hopper. Note: use
hoppZ2nersc.gov prior to January 2011.
Passwords must not be shared. Login privileges
are disabled with three login failures; call Account
Management to clear login fadures.

Hopper NODE ARCHITECTURE
Note the Non-Uniform Memory Architecture
(NLMA)vnlh s:xwesper NUMA node:

A
’||||
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Low swirl burner combustion simulation. Image shows flame radical, OH (purple surface and
cutaway) and volume rendering (gray) of vortical structures. Red indicates vigorous burning
of lean hydrogen fuel; shows cellular burning characteristic of thermodiffusively unstable fuel.
Simulated using an adaptive projection code. Image courtesy of John Bell, LBNL.

Hydrogen plasma density wake produced by an intense, right-to-left laser pulse. Volume rendering of
current density and particles (colored by momentum orange - high, cyan - low) trapped in the plasma wake
driven by laser pulse (marked by the white disk) radiation pressure. 3-D, 3,500 Franklin-core, 36-hour
LOASIS experiment simulation using VORPAL by Cameron Geddes, LBNL. Visualization: Gunther Weber,
NERSC Analytics.

Numerical study of density driven flow for CO, storage in saline aquifers. Snapshot of CO,
concentration after convection starts. Density-driven velocity field dynamics induces convective
fingers that enhance the rate by which CO, is converted into negatively buoyant aqueous phase,
thereby improving the security of CO, storage. Image courtesy of George Pau, LBNL

False-color image of the Andromeda Galaxy created by layering 400 individual images
captured by the Palomar Transient Factory (PFT) camera in February 2009. NERSC systems
analyzing the PTF data are capable of discovering cosmic transients in real time. Image
courtesy of Peter Nugent, LBNL.

The exciton wave function (the white isosurface) at the interface of a ZnS/ZnO nanorod.
Simulations performed on a Cray XT4 at NERSC, also shown. Image courtesy of Lin-Wang

Wang, LBNL.

Simulation of a global cloud resolving model (GCRM). This image is a composite plot showing

several variables: wind velocity (surface pseudocolor plot), pressure (b/w contour lines), and a
cut-away view of the geodesic grid. Image courtesy of Professor David Randall, Colorado State
University.
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