=R A"

Performance Tools

Customer Documentation and Training

- CrayPat
— Apprentice2

10/18/2010 Cray Private 2

Performance Tools cmasr

— CrayPat is a performance analysis tool that collects
performance information from a user application

= CrayPat supports two types of experiments: sampling and
tracing

« Sampling experiments capture values from the call stack or
the program counter at specified intervals or when a specified
counter overflows

 Tracing counts an event, such as the number of times an MPI
call is executed

= CrayPat uses PAPI to read the performance counters of the
Opteron processor

— Cray Apprentice2 generates graphical displays from
the .ap2 file

CrayPat SRasy

e Consists of three major components

- pat_build used to instrument the program
to be analyzed

— pat_report areport generator
- pat_help an online help system, fag on
front page

— Additional man pages are hwpc and papi_counters,
Intro_craypat

pat_ builld Sampling

— The lack of tracing options causes pat _buirldto
default to sampling

= Sampling is controlled by the environment variable
PAT RT _EXPERIMENT

o Supported sampling functions are: samp_pc_time,
samp_pc_ovfl, samp cs time, samp _cs ovfl,
samp_ru_time, samp_ru ovfl, samp heap time,
samp_heap_ ovfl

* Do not collect hardware counter information when you sample
by overflow (for example< samp _pc_ovfl)

— Use sampling to obtain a profile and then trace
functions of interest

Using CrayPat

e To instrument a program:

- Load the CrayPat module
% module load xt-craypat (perftools (CLE 3.1))

— The executable and object (.0) files are required

% ftn -c prog.fa0
% cc -c work.c
% ftn -o programl prog.o work.o

— Or

n1d00008/rns> ftn -0 samp264 samp264.f
/opt/cray/xt-asyncpe/3.4.4/bin/ftn: INFO: linux target i1s being used
WARNING: CrayPat i1s saving object files from temporary locations

into directory "/home/users/rns/.craypat/samp264/15976*
n1d00008/rns>

« Run pat_buildto instrument the program

n1d00008/rns> pat _build samp264
ni1d00008/rns> Is —1 samp26*

— Execute the instrumented program

Bt e

10/18/2010 Cray Private 7

Automatic Profiling Analysis (APA) S

- The sample based instrumented program will generate
a .xF file

= Depending on environmental variable:
e there is either a single .xF file (default) created
e or asubdirectory with a .x¥ file for each processor used

- Run pat_report

» pat_report will generate an .ap2 and .apa file, as well as run
a text report to stdout

» The .ap2 is used to generate additional text reports or by
Apprentice2

» The .apa fileis used (optionally) to assist you in creating a

trace based experiment file

n1d00008/rns> pat_report samp264+pat+2885-203sdt.xf
ni1d00008/rns> Is —1 samp264+*

-rW——————-— 1 rns hwpt 444 Sep 24 19:25 samp264.pbs.01879481
-rw-r-—-—-—- 1 rns hwpt 7240 Sep 24 19:25 samp264+pat+2885-203sdt.xf
-rw-r--r-- 1 rns hwpt 1568 Sep 24 19:26 samp264+pat+2885-203sdt.apa

~YwW-r--r-- 1 rns hwpt 36864 Sep 24 ,19:26 samp264+pat+2885-203sdt.ap2

Automatic Profiling Analysis (APA) S

-~ To use the .apa file to build atrace experiment file

* No need to specify the executable
* You should get an instrumented program samp264+apa

n1d00008/rns> pat build -0 samp264+pat+2885-203sdt.apa
INFO: Trace intercept routine created for the 883 byte

function "use data ".
n1d00008/rns> Is —Itr

-rwxr-xr-x 1 rns hwpt 3599891 Sep 24 19:49 samp264+apa

— APA analysis specific support for:
*» Loop Count Statistics and Optimization Guidance
= OpenMP support
» PGAS (UPC) support
= HW counter support

Automatic Profiling Analysis (APA) Srmase

— Run application to get top time consuming routines
% aprun -n 4 samp264+apa
* The .apa file can be modified and used again by you
» Use pat_reportto view the .xF file
» The .apa fileincludes PAT_RT_HWPC=0

pat buinld Trace Options

— To trace functions and create the instrumented
executable, use the following pat _build options:
—g [heap|]stdio]10]..] for one of the predefined groups
 Refer to the pat_build man page for a complete list
-t tracefile to specify afile containing a lists of functions to

trace
-T tracefunc where tracefunc is a comma-separated list of

function names to trace; 'tracefunc excludes function
—U create new trace intercept routines for those function entry
points that are defined in object and archive files
 Instead of using the -u option, use the following options
— With the PGI compilers, use -Mprof=func
— With the GNU compilers, use -finstrument-functions

—W creates new trace intercept routines for those function entry
points where no trace intercept routine already exists

Other pat _buinld Options cmas

— You can specify the name of resulting instrumented
program with the —o option or by the final argument. If

neither are specified, the program name is appended
with +pat

—-A enables the instrumented program to produce the data file that
IS accepted as input to Cray Apprentice2 (.ap2)

 Requires that output be written to a file system that supports
locking (such as a Lustre file system)
—F overwrite existing output file Instr_program

Note: pat _buirld does not enable you to instrument a

program that is also using the PAPI interface
directly (via 11tbhwpc)

Experiment Output s

 The experiment output file (or data file) Is:
— A directory with afile (.x¥) for each process

— A single . xf file

* Requires that output be written to a file system that supports
locking (such as a Lustre file system)

* The file named reduce+pat+3496-12tdt.xf contains the

following information: name of the instrumented program,
reduce+pat; the process ID 3496; the physical node—the
application started on 12; and the type of experiment performed

— The pat_report command reads the experiment file(s)
and produces atext or .ap2 file
» The .ap2fileis used as input to Apprentice
» The .ap2 file can be used by pat_reportto produce text output

« The .ap2file is portable; it does not require the source or .xF
files

Environment Variables e~

« PAT RT_SUMMARY

— O turn off summary
— 1 enable summary (default)

« PAT RT EXPFILE_PER PROCESS

-~ 0 write experiment data to a single file
» Requires a file system capable of locking

-1 write a separate file for each process

= An application may abort if the number of processes exceeds
the number of open files permitted

Environment Variables e~

« PAT RT_EXPFILE_NAME
- The experiment file name
« PAT RT_EXPFILE_DIR

— The directory that contains the experiment output file

— Specify a Lustre directory when you create a single
experiment output file

« PAT _RT_HWPC
— Define the HWPC group

patreport e

 The default report is ‘sample by function’; alternate
views that use the -o option include:

—calltree
—callers
-~ load _balance

10/18/2010 Cray Private 16

A Sequence of Commands SRax

rns/crayPatExample> module load xt-craypat
rns/crayPatExample>

rns/crayPatExample> pat_build samp264
rns/crayPatExample> vi samp264.pbs
rns/crayPatExample> gqsub samp264.pbs
rns/crayPatExample>

rns/crayPatExample>

rns/crayPatExample>
rns/crayPatExample>

rns/crayPatExample> Is -ltr

-rw-r--r-- 1 rns
-rw-r--r-- 1 rns
-rwxr-xr-x 1 rns
-rwxXr-xr-x 1 rns

-rW——————- 1 rns
-rw-r—-—-—-—-— 1 rns
-rw-r--r-- 1 rns
-rw-r--r-- 1 rns
-rw-r--r-- 1 rns
-rwxXr-xr-x 1 rns

rns/crayPatExample> vi samp264.pbs

hwpt 5411
hwpt 306
hwpt 2001625
hwpt 3592502

hwpt 459
hwpt 7240
hwpt 5248
hwpt 1613
hwpt 36864

hwpt 3599971

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

25
25
25
25
25
25
25
25
25
25

rns/crayPatExample> gqsub samp264.pbs
rns/crayPatExample> pat_report samp264+apa+8557-142tdt.xf > samp264+apa+8557.report
rns/crayPatExample> view samp264+apa+8557.report

13:34
13:34
13:35
13:35
13:36
13:36
13:37
13:37
13:37
13:53

Loaded the CrayPat module for the XT system

Created the experiment executable
modify the job script to run samp64+pat
run the job

#

ftn -0 samp264 samp264.f # compiled the code — simple application
#
#

cat samp264.pbs.01879623 # Made sure the job ran ©

pat_report samp264+pat+15346-43sdt.xf > samp264+pat+15346.report
view samp264+pat+15346.report

pat_build -0 samp264+pat+15346-43sdt.apa

samp264 .t

samp264 . pbs

samp264

samp264+pat

samp264 .pbs.01879623
samp264+pat+15346-43sdt.xTf
samp264+pat+15346.report
samp264+pat+15346-43sdt.apa
samp264+pat+15346-43sdt.ap2
samp264+apa

modify the job script to run samp64+apa
run the job

view samp264+pat+15346.report - ==es-

Table 1: Profile by Function

S I SIS I éggb I Sa%gb% IGgaﬂgtion This is the report from the first “sample”
| | | | PE="HIDE* experiment.
100.0% | 959 | — —— |Total Table 1 shows the highest used functions,

MAIN and use_data

Table 2 show more detail about those
functions and provides information on some
of the loops in the use_data function. (These
are generated when there is enough data
(samples) to produce this information, small
codes may not report such detail.)

|
e
Il 96.6% | 926 | 0.75 | 0.1% Juse_data_
11 3.3% | 32] 0.00 | 0.0% [MAIN_

Table 2: Profile by Group, Function, and Line

Samp % Imb. |Group
Samp % | Function
| Source

| Line

| PE="HIDE*

96.6% | 928 | e | -— Juse_data_
| | rns/crayPatExample/./samp264.f
e
11 1.50 | 4_0% |J1ine.123
11 6-1% | 59 | 1.00 | 2.2% |1ine.134
11 1.00 | 0.2% |l1ine.148
I

3.3% | 32] 0.00 | 0.0% |MAIN_
| | | | rns/crayPatExample/./samp264.f
| | | | line.43

view samp264+apa+8557.report

Table 2:
Group / Function / PE="HIDE"

Profile by Function Group and Function

Ay

This is the report generated after

pat_build -0 samp264+pat+15346-43sdt.apa
was executed and the executable samp264+apa was
run. The APA file suggested HWPC value 1 be
used. This is where the performance counter data

comes form in Table 2

Time%

Time

Imb.Time

Imb.Time%

Calls 2.0 /sec
PAP1_L1_DCM 12 .355M/sec
PAP1 _TLB DM 5.849M/sec
PAPI_L1 DCA 208 .397M/sec
PAPI_FP_OPS 145.973M/sec

User time (@pprox) 14.805 secs
Average Time per Call

CrayPat Overhead : Time

HW FP Ops / User time

HW FP Ops / WCT

Computational iIntensity
MFLOPS (aggregate)

TLB utilization

D1 cache hit,miss ratios

D1 cache utilization (misses)

0.0%
145 _973M/sec
145 _973M/sec
583 .89M/sec

94_1% hits

0.06 ops/cycle
35.63 refs/miss

16.87 refs/miss

96.3%

14 .805327
0.007424
0.1%

30.0
182917104
86592140
3085410313
2161200000
34052604860
0.493511

2161200000

Secs
SecCs

calls
misses
misses
refs
ops
cycles
sec

100.0%T ime

ops 1.6%peak(DP)

ops/ref
avg uses

misses
avg hits

Hardware Performance Counters cmas

- The APA file makes suggestions about what hardware
performance counters should be used

* To use different performance counter set the PAT_RT _HWPC
ENVIRONMENTAL variable and rerun the job.

rns/crayPatExample> cat samp264+pat+15346-43sdt.apa
[clipped]

HWPC group to collect by default.
-Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

rns/crayPatExample> cat samp264.pbs
#1/bin/ksh

#PBS -j oe

#PBS -1 mppwidth=4

#PBS -1 walltime=00:30:00

export PAT_RT_HWPC=0

cd $PBS_O_WORKDIR

#aprun -n 4 _./samp264

#aprun -n 4 _./samp264+pat

aprun -n 4 _/samp264+apa

Looking Closer

— Load the correct modules

— Since you are probably interested in hardware
counters for only a narrow range of code, use the
CrayPat APl to identify the region of interest.

» [n C/C++

#include <pat _api.h>
PAT region_begin(l, " loop™);

PAT _region_end(l);
* |n Fortran

#include <pat_apif.h>
call PAT _region_begin(l,"loop*,stat);

call PAT region_end(l,stat);

Looking Closer SrRase

— Compile your code.

— Use pat_buirldto relink and create an instrumented
binary.

— Use the environment variable PAT_RT HWPC to select

the hardware counters that you want to collect.
PAT_RT_HWPC=0

-~ You can also save your favorite counters in a file and
pass them to CrayPat
= Add file name to PAT_RT_HWPC_FILE environment variable

Looking Closer

first find the mean
(walk thru memory as sequentially as possible)
call PAT _region_begin(l, "halo_loop', istat)
total = 0.0
do k =1, nz
do jJ =1, ny
do 1 =1, nx
total = total + array(i, jJ, k)
enddo
enddo
enddo
call PAT _region_end(l, istat)

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE="HIDE*®
100.0% | 16.066011 | -—] --] 65.0 |Total
I ___
| 100.0% | 16.065887 | - | -- | 63.0 JUSER

| 87.9% | 14.121553 | 0.012971 | 0.1% | 30.0 Juse_data_
| 8.6% | 1.385652 | 0.001772 | 0.2% | 30.0 |#1.halo_loop
| 3.5% | 0.558584 | 0.011731 | 2.7% | 1.0 |MAIN_

Looking closer

USER 7/ #1.halo_loop

Ay

Time%

Time

Imb.Time

Imb.Time%

Calls 21.6 /sec

PAP1_L1 DCM 0.791M/sec

PAPI1_TOT_INS 1969.692M/sec

PAP1_L1 DCA 923.223M/sec

PAP1_FP_OPS 130.757M/sec

User time (approx) 1.386 secs
100.0%Time

Average Time per Call

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 130.757M/sec
1.4%peak(DP)
HW FP Ops / WCT
HW FP Ops 7/ Inst
Computational intensity
Instr per cycle
MIPS
MFLOPS (aggregate)
Instructions per LD & ST
D1 cache hit,miss ratios

D1 cache utilization (misses)

130.757M/sec

7878.77M/sec
523.03M/sec
46.9% refs
99.9% hits

0.06 ops/cycle

8.6%
1.385652
0.001772

0.2%

30.0

1095556
2729544748
1279376922

181200000
3187276531

0.046188

181200000

6.6%

0.14
0.86

2.13
0.1%

1167.79 refs/miss 145.973

SeCs
SecCs

calls
misses
instr
refs
ops
cycles

SecC

ops

ops/ref
inst/cycle

inst/ref
misses
avg hits

PAPI cmase

-~ PAPI provides a common interface for the performance
counters in various processors, including the Opteron

= PAPI defines a set of Preset counters that map to acommon
performance counter in various processors

 The Preset name matches as closely as possible to the Native
event
— Using the Preset name provides portability between
processors when user code is modified to collect
performance data

= A Native event is an actual hardware counter in the processor
« See the papi_counters, papi_avail, and
papi_native_ availl man pages
e papi_avalil, and papi_native_availl are commands that

can be executed on the compute node to determine the
available counters

aprun -n 1 /opt/xt-tools/papi/default/bin/papi_avail

PAPI Terminology 3

 An event set is a group of native events, preset events,
or a combination of both

— CrayPat defines 20 groups (sets)

» Select a set by using the environment variable
PAT RT_HWPC

— Profiling - counting specified events
» Used in CrayPat

— Overflow - testing events and alerting the application
when a count is exceeded
» Requires modification of the user application

Cray Apprentice2 Smasr

« % module load apprentice?2
% app2 programl+pat+180tdo-0000.ap2

=101]

Eile: Help

B3 Apprentice2 3.1

w About Apprentice?

Eile Help

wsamp32+pat+1632td.ap2 |

N o, @

vaewiew|

o

Sort by Calls Sort by Time

L]

printSamples.553.7%
set:22. 3%

doCaomp:11.2%

MPI_Wtime: 7. 7% §
S
MP_Alreduce:5.9%

listRankLocations:12.1%

doTest:33.5%

10/18/2010 Cray Private 27

File Help |

w full_tracing_496 16x31x1.ap2 X |

ee

Call Graph X |
p ! -IH!]
t: 1%)
Prs dj_ p ' 2
d 3 _
tc! i o)
lm?i -. o) lsggr_pru:on_nd c_tri_adj2_ :r_:lz !_E :' 151
ger co £ 1a]] (c=14.7 ' 91%)
(e a)
swap_bounds_[56
“elliptic_g or_adj2_[2] (; 9%) p_bounds_adj_[98]
(c=2.90! 4.56%) (e 6%)
mpp_tri_so xec_[l
{e=] o)
swap_bo dj_[96]
(e)
(g
- | SEEI"CHZI

|
10/18/2010 Cray Private 28

