
MPI Programming ModelMPI Programming Model

Customer Documentation and Training

What is MPI?

• MPI (Message Passing Interface) is a portable message
passing style of parallel programming

A il bl ll HPC d l tf t d– Available on all HPC vendor platforms today
– Most widely used HPC parallel programming style

Contains a rich set of routines yet most programs– Contains a rich set of routines, yet most programs
use only a few of the routines

• Cray XT system uses standard MPICH-2 developed atCray XT system uses standard MPICH 2 developed at
Argonne National Laboratory
– Full implementation of the MPI-2 standard, with the

ti f th f tiexception of the spawn functions
• Bindings for Fortran, C, and C++

2Cray Private

General MPI Model

• Execution model allows each task to operate separately
– Tasks generally are created at startup and continue

th h t th ti tithroughout the entire execution
– Synchronization is implicit in each point-to-point or

collective data movementcollective data movement
• Memory model assumes that memory is private to each

task
– Allows mapping to single-address-space systems
– Either distributed memory or shared memory systems

• Implemented as users’ calls to library functions
– Move data point-to-point between tasks
– Perform some collective computations

3Cray Private

MPI Processes

• An MPI program consists of autonomous processes
– The processes may run either the same code (SPMD

t l) diff t d (h t)style) or different codes (heterogeneous)
• Processes communicate with each other via calls to MPI

functionsfunctions
• A process can be sequential or multithreaded

MPI does not specify the initial allocation of processes– MPI does not specify the initial allocation of processes
– Cray XT systems that run Catamount on the compute

nodes do not support multithreaded applications
– Cray XT systems that run CNL on the compute nodes

support multithreaded applications, such as
applications using OpenMPapplications using OpenMP

4Cray Private

MPI Basics

• Communicator
– An ordered set of processes, either system- or user-

d fi ddefined
– The default communicator is: MPI_COMM_WORLD

The MPI Comm size function returns the number of– The MPI_Comm_size function returns the number of
processes in the communicator

• RankRank
– Your process number within a communicator
– Used for actual sends and receives
– The MPI_Comm_rank function returns the process

rank within a communicator

5Cray Private

MPI Message Matching

• MPI enables an operation to control which messages it
receives

MPI th d t t t f thi– MPI uses the source and tag argument to perform this
matching

Source
• The source specifier in the MPI_Recv function allows the

programmer to specify that a message will be received either
from a single named process (specified by its integer process
id tifi) f (ifi d b th i l lidentifier) or from any process (specified by the special value
MPI_ANY_SOURCE)

Tag
M t id th t di ti i h b t• Message tags provide another way to distinguish between
different messages: a sending process must associate an
integer tag with a message via the tag field in the MPI_Send
call; a receiving process can then specify that it will receivecall; a receiving process can then specify that it will receive
messages either with a specified tag or with any tag
(MPI_ANY_TAG)

6Cray Private

MPI Message

• A message consists of:
– An envelope portion

The exact definition depends on the implementation
Typically consists of the message tag, communicator, source,
destination, and possibly the message length

– A data portion
Contains the information to be passed
The exact definition depends on the implementationThe exact definition depends on the implementation
• Using standard or derived datatypes

• A message exists within a communicator
– For example: MPI_COMM_WORLD

7Cray Private

MPI Messages

Sending Process N Receiving Process N+1

ArrayA ArrayB
Message header

comm/tag/size

MPI
b ff

comm/tag/size
N / N+1

buffersMessage data

Unexpected p
message queue

Determinism

• Message-passing programming models are
nondeterministic by default: the order of arrival of
messages from two processes A and B to a thirdmessages from two processes, A and B, to a third
process, C, is not defined
– The programmer must ensure that a communication is p g

deterministic when this is required (as is usually the
case)
However MPI does guarantee that two messages from– However, MPI does guarantee that two messages from
one process, A, to another process, B, will arrive in the
order they were sent

9Cray Private

MPI in Fortran

• Function names are in uppercase; e.g., MPI_RECV
CALL MPI_XXXX(parameter, ... , IERROR)

• Function return codes are represented by an additional
integer argument. The return code for successful
completion is MPI SUCCESS; a set of error codes iscompletion is MPI_SUCCESS; a set of error codes is
also defined

• Compile-time constants are in uppercase and are
defined in the mpif.h file, which must be included in any
program that makes MPI calls

MPI Fortran header files:MPI Fortran header files:
INCLUDE ’mpif.h’

10Cray Private

MPI in Fortran

• An MPI datatype is defined for each Fortran datatype:
MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI COMPLEX MPI LOGICAL MPI CHARACTER etcMPI_COMPLEX, MPI_LOGICAL, MPI_CHARACTER, etc.

• A status variable is an array of integers of size
MPI STATUS SIZE; the constants MPI SOURCE andMPI_STATUS_SIZE; the constants MPI_SOURCE and
MPI_TAG index the source and tag fields, respectively
– All handles have type INTEGER

11Cray Private

MPI in C and C++

• Function names have the MPI prefix and the first letter of
the function name in upper case; e.g. MPI_Recv

MPI X (t)error = MPI_Xxxxx(parameter, ...);

– Compile-time constants are defined in the mpi.h file,
which must be included in any program that makes MPI y g
calls

MPI C / C++ header file
#include <mpi h>#include <mpi.h>

– An MPI datatype is defined for each C datatype:
MPI_CHAR, MPI_INT, MPI_LONG, MPI_UNSIGNED_CHAR,
MPI UNSIGNED MPI UNSIGNED LONG MPI FLOAT MPI DOUBLEMPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE, etc.

– Function parameters with type IN are passed by value;
parameters with type OUT and INOUT are passed by
reference (that is, as pointers)

12Cray Private

MPI in C and C++

• Status values are returned as integer return codes. The
return code for successful completion is MPI_SUCCESS;
a set of error codes is also defineda set of error codes is also defined
– A status variable has type MPI_Status and is a

structure with fields, status.MPI_SOURCE and _
status.MPI_TAG, that contain source and tag
information
Handles are represented by special defined types– Handles are represented by special defined types,
which are defined in mpi.h

13Cray Private

Basic Functions

• MPI can be very simple. These six functions enable you
to write many programs:
MPI I itMPI_Init
MPI_Comm_size
MPI Comm rankMPI_Comm_rank
MPI_Send
MPI Recv_
MPI_Finalize

14Cray Private

MPI Initialization

• MPI processes launch during program startup, before
user MAIN

MPI k 0 i th t– MPI rank 0 is the root process
– All processes in MPI_Init:

Read environment variablesRead environment variables
Initialize local data structures
Acquire addresses for remote data structures
Initialize I/O and buffersInitialize I/O and buffers

– The MPI_init function must be the first MPI call
Fortran
CALL MPI_INIT(IERROR)
C / C++
int MPI Init(int *argc, char ***argv);int MPI_Init(int argc, char argv);

– It may be called only once
Subsequent calls are erroneous 15Cray Private

MPI Send

• SEND – Standard send: a blocking send operation
– Fortran
INTEGER COUNT,DATATYPE,DEST,TAG,COMM,IERROR
CALL MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM,
IERROR)

– C / C++
int MPI_Send(void *buf, int count, MPI_Datatype
datatype,int dest, int tag, MPI_Comm comm)_

• Processes might deadlock if all are trying to send at the
same time because a send may require that the message
b i d b f th ti (thibe received before the process can continue (this
depends on the implementation).

16Cray Private

MPI Receive

• Standard receive: a blocking receive operation
– Fortran

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, IERROR
INTEGER STATUS(MPI_STATUS_SIZE)
CALL MPI_RECV (BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, STATUS, IERROR)

– C / C++
int MPI Recv(void *buf, int count, MPI Datatypeint MPI_Recv(void buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

17Cray Private

MPI Finalize

• Fortran
CALL MPI_FINALIZE(IERROR)

C / C++• C / C++
int MPI_Finalize();

• Cleans up all MPI stateCleans up all MPI state
– All processes must call MPI_Finalize()

An implicit barrier permits proper exit sequence
Barrier ensures that all communications are complete
No MPI functions (including MPI_Init) can occur after
MPI_Finalize()

18Cray Private

Fortran Example #1

PROGRAM SIMPLE ! SAMPLE 2-PE MPI CODE
INCLUDE 'mpif.h‘
INTEGER, PARAMETER :: N = 1000
INTEGER OTHER PEINTEGER OTHER_PE
INTEGER SEND, RECV
INTEGER STATUS(MPI_STATUS_SIZE)
REAL, DIMENSION(N) :: RBUF, SBUF, ,
CALL MPI_INIT(IERR)
IF (IERR /= 0) STOP 'BAD INIT‘
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NPES, IERR)
IF (IERR /= MPI SUCCESS) STOP 'BAD SIZE‘IF (IERR /= MPI_SUCCESS) STOP 'BAD SIZE‘
CALL MPI_COMM_RANK(MPI_COMM_WORLD, ME, JERR)
IF (JERR /= MPI_SUCCESS) STOP 'BAD RANK‘
IF (NPES /=2) THEN

PRINT*,'MUST RUN WITH 2 PES- EXITING‘
CALL EXIT(2)

ENDIF

19Cray Private

Fortran Example #1

IF (ME == 0) OTHER_PE = 1
IF (ME == 1) OTHER_PE = 0
DO J = 1, N

SBUF(J) JSBUF(J) = J
ENDDO
IF (ME == 0) THEN

CALL MPI SEND(SBUF, N, MPI REAL, OTHER PE, 99, &_ , , _ , _ , ,
MPI_COMM_WORLD, SEND)

IF (SEND /= MPI_SUCCESS) STOP 'BAD SEND ON 0‘
CALL MPI_RECV(RBUF, N, MPI_REAL, OTHER_PE, 99, &

MPI COMM WORLD STATUS RECV)MPI_COMM_WORLD, STATUS, RECV)
IF (RECV /= MPI_SUCCESS) STOP 'BAD RECV ON 0‘

ELSE ! PE 1
CALL MPI_RECV(RBUF, N, MPI_REAL, OTHER_PE, 99, &

MPI_COMM_WORLD, STATUS, RECV)
IF (RECV /= MPI_SUCCESS) STOP 'BAD RECV ON 1‘
CALL MPI_SEND(SBUF, N, MPI_REAL, OTHER_PE, 99, &

MPI COMM WORLD SEND)MPI_COMM_WORLD, SEND)
IF (SEND /= MPI_SUCCESS) STOP 'BAD SEND ON 1‘

ENDIF
20Cray Private

Fortran Example #1

CALL MPI_FINALIZE(IERR)
IF (IERR /= MPI_SUCCESS) STOP 'BAD FINALIZE‘
IFLAG = 1
DO I 1 NDO I = 1, N

IF (RBUF(I) /= SBUF(I)) THEN
IFLAG = 0
PRINT*,'PE ', ME,': RBUF(',I,')=',RBUF(I), &
' SHOULD BE ', SBUF(I)

ENDIF
ENDDO
IF (IFLAG == 1) THENIF (IFLAG == 1) THEN

PRINT*,'TEST PASSED ON PE ', ME
ELSE

PRINT*,'TEST FAILED ON PE ', ME
ENDIF
END PROGRAM SIMPLE

21Cray Private

C Example #1

#include <mpi.h> /* sample 2-PE MPI code */
#define N 1000
main(argc, argv)
i tint argc;
char *argv[];{
int num_procs;
int my proc;_
int init, size, rank, send, recv, final;
int i, j, other_proc, flag = 1;
double sbuf[N], rbuf[N];
MPI Status recv status;MPI_Status recv_status;
/* Initialize MPI */
if ((init = MPI_Init(&argc, &argv)) != MPI_SUCCESS) {

printf("bad init\n");
exit(-2); }

/* Determine the size of the communicator */
if ((size = MPI_Comm_size(MPI_COMM_WORLD, &num_procs))

!= MPI SUCCESS) {!= MPI_SUCCESS) {
printf("bad size\n");
exit(2);}

22Cray Private

C Example #1

/* Make sure we run with only 2 processes */
if (num_procs != 2) {
printf("must run with 2 processes\n");
exit(1);

}
/* Determine process number */
if ((rank = MPI_Comm_rank(MPI_COMM_WORLD, &my_proc))
!= MPI_SUCCESS) {
printf("bad rank\n");
exit(1);

}
if (my_proc == 0) other_proc = 1;_ _
if (my_proc == 1) other_proc = 0;
for (i = 0; i < N; i++)
sbuf[i] = i;

23Cray Private

C Example #1

/* Both processes send and receive data */
if (my_proc == 0) {
if ((send = MPI_Send(sbuf, N, MPI_DOUBLE, other_proc,
99 MPI COMM WORLD)) ! MPI SUCCESS) {99, MPI_COMM_WORLD)) != MPI_SUCCESS) {
printf("bad send on %d\n",my_proc);
exit(1); }

if ((recv = MPI Recv(rbuf, N, MPI DOUBLE, other proc,_ _ _p
98, MPI_COMM_WORLD, &recv_status)) != MPI_SUCCESS){
printf("bad recv on %d\n", my_proc);
exit(1); }

}}
else if (my_proc == 1) {
if ((recv = MPI_Recv(rbuf, N, MPI_DOUBLE, other_proc,
99, MPI_COMM_WORLD, &recv_status)) != MPI_SUCCESS){
printf("bad recv on %d\n", my_proc); exit(1); }

if ((send = MPI_Send(sbuf, N, MPI_DOUBLE, other_proc,
98,MPI_COMM_WORLD)) != MPI_SUCCESS) {
printf("bad send on %d\n" my proc); exit(1); }printf(bad send on %d\n ,my_proc); exit(1); }

}

24Cray Private

C Example #1

/* Terminate MPI */
if ((final = MPI_Finalize()) != MPI_SUCCESS) {
printf("bad finalize \n");

it(1)exit(1);
}
/* Making sure clean data has been transferred */
for(j = 0; j < N; j++) {j j j
if (rbuf[j] != sbuf[j]) {
flag = 0;
printf("process %d: rbuf[%d]=%f. Should be %f\n",
my proc j rbuf[j] sbuf[j]);my_proc, j, rbuf[j], sbuf[j]);

}
}
if (flag == 1)
printf("Test passed on process %d\n", my_proc);

else
printf("Test failed on process %d\n", my_proc);
exit(0);exit(0);

}

25Cray Private

Ghost Planes

• When the members of a parallel application share a
global virtual array, the shared edges or ghost planes,
can be visualized this way:can be visualized this way:

Process N Process N+1 Process N+2 Process N+3

26Cray Private

Ghost Planes

Process N Process N+1

[ny][0] [0][ny+1] [ny+1][ny]
ghost ghost ghost ghost

[1] [1]

Process N Process N+1

27Cray Private

Collective Operations

• Communication that involves a group of processes
– Barrier synchronization
– Broadcast
– Global reduction operations (e.g., sum, min, max, user-

defined)defined)
– Gather/scatter operations and their variants
– Combined reduction and scatterCombined reduction and scatter
– Scan (prefix) operations

28Cray Private

Collective Operations

• May be implemented with MPI point-to-point
– Implementations can optimize for small transfers

(l t) l (b d idth) b th(latency), large (bandwidth), or both
– Generality of some MPI collective operations can limit

performanceperformance
Routines must assume that datatypes are general and
discontiguous
Time/memory tradeoffs occur (for internal temporary buffers)Time/memory tradeoffs occur (for internal temporary buffers)

29Cray Private

Barrier Synchronization

• The calling process blocks until all group members call
the barrier

U f l f h i ti– Useful for synchronization among processes

– Fortran
INTEGER::COMM,IERROR
CALL MPI_BARRIER (COMM,IERROR)

C/C++– C/C++
int MPI_Barrier (MPI_Comm comm)

30Cray Private

Broadcast a Message

• Broadcasts a message from one process (with rank
ROOT) to all processes of the group

F t– Fortran
INTEGER::COUNT,DATATYPE,ROOT,COMM,IERROR
<type>::BUF(*)<type>::BUF()
CALL MPI_BCAST(BUF, COUNT, DATATYPE, \
ROOT, COMM, IERROR)

– C/C++

int MPI_Bcast (void* buf, int count, \
MPI Datatype datatype int root MPI Comm comm)MPI_Datatype datatype,int root, MPI_Comm comm)

31Cray Private

MPI_Bcast

4 processes

A0 A0

A0MPI Bcast
A0

A0

MPI_Bcast

Root = 0

32Cray Private

MPI_Scatter

4 processes

A0 A0

A1MPI Scatter

A1 A2 A3

A2

A3

MPI_Scatter

Root = 0

33Cray Private

MPI_Gather and MPI_Allgather

A0

4 processes

A0
A1

A2

MPI_Gather A1 A2 A3

Root == 1
A3

Root 1
Count == 1

A0

4 processes

A0 A1 A2 A3

A0

A0

A1

A2

MPI_Allgather A1 A2 A3

A0 A1 A2 A3

A A A AA2

A3

Count == 1
A0 A1 A2 A3

A0 A1 A2 A3

34Cray Private

Global Reduction Operations

• Perform a global reduce operation
– Predefined or user-defined

• Fortran
INTEGER::COUNT, DATATYPE, OP ROOT, COMM, IERROR
<type>::SENDBUF(*), RECVBUF(*)

C/C

<type>::SENDBUF(), RECVBUF()
CALL MPI_REDUCE (SENDBUF, RECBUF, COUNT, DATATYPE, \

OP, ROOT, COMM, IERROR)

• C/C++
int MPI_Reduce (void* sendbuf, void* recvbuf, int count, \
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)_ yp yp , _ p p, , _

35Cray Private

MPI_Reduce and MPI_Allreduce
4 processes array of 2 elements

MPI_Reduce

4 processes, array of 2 elements
2 4
5 7

0 2
- -

--
0 3
6 2

MPI_MIN; root=0 - -

4 processes array of 2 elements

MPI_Allreduce

4 processes, array of 2 elements
2 4
5 7

0 2
0 2

0 3
6 2

MPI_MIN 0 2
0 2

MPI_Reduce

4 processes, array of 2 elements
2 4
5 7 13 16

- -
_

MPI_Sum; root=1
7

0 3
6 2 - -

- -
13 16

36Cray Private

MPI Terminology

• Nonblocking – the function may return before the
operation completes

Th t if th ifi d i th ll– The user must verify the resources specified in the call
are available before using them again

• Blocking a return from the function indicates that• Blocking – a return from the function indicates that
resources specified in the call are available
– Send buffer is empty or receive buffer is full

• Local – completion of the function depends only on the
local process that is executing

• Nonlocal – completion of the operation may require
execution of some MPI function on another process

37Cray Private

MPI Communications

• Synchronous - operations complete only after the buffer
becomes available for reuse (blocking operations)

• Asynchronous - the process continues while the
communication is processing (nonblocking operations)

Requires that the program test or wait for operations to– Requires that the program test or wait for operations to
complete

38Cray Private

MPI Blocking Operations

• MPI_Send
– Starts a blocking send

Blocks until the buffer (array) is available for reuse
• Depending on implementation, may wait for a matching

receive

• MPI_Rsend
– In addition, expects a matching receive to be posted

• MPI_Ssend
– In addition, waits for the receive to start receiving data

• MPI_Recv
– Starts a blocking receive

39Cray Private

MPI Nonblocking Operations

• MPI_Isend
– Starts a nonblocking send

• MPI_Irsend
– In addition, expects a matching receive to be posted

• MPI_Issend
– In addition, waits for the receive to start receiving data

• MPI_Irecv
Starts a nonblocking receive– Starts a nonblocking receive

40Cray Private

Completion of Nonblocking Operations

• MPI_Test
– Nonblocking test for the completion of a nonblocking

tioperation
• MPI_Wait

Bl ki t t f th l ti f bl ki– Blocking test for the completion of a nonblocking
operation

• MPI Testall MPI WaitallMPI_Testall, MPI_Waitall
– For all in a collection of requests

• MPI Testany MPI WaitanyMPI_Testany, MPI_Waitany
• MPI_Testsome, MPI_Waitsome

41Cray Private

Testing for Arrived Messages

• MPI_Probe
– Blocking test for an incoming message

• MPI_Iprobe
– Nonblocking test for an incoming message

42Cray Private

Fortran Nonblocking Example

• Add a few variable declarations
INTEGER:: REQUEST
INTEGER DIMENSION(MPI STATUS SIZE) STATUS

• Change the main loop

INTEGER, DIMENSION(MPI_STATUS_SIZE)::STATUS

g p
DO I=1, NPES
CALL MPI_ISEND(TOKEN, 1 , MPI_INTEGER, RIGHT, LFLAG, &

MPI COMM WORLD REQUEST IERROR)MPI_COMM_WORLD, REQUEST, IERROR)
CALL MPI_RECV(OTHER, 1, MPI_INTEGER, LEFT, LFLAG, &

MPI_COMM_WORLD, STATUS, IERROR)
CALL MPI_WAIT(REQUEST, STATUS, IERROR)

43Cray Private

C Nonblocking Example

• Use the nonblocking send to modify the previous C
language example:

Add f i bl d l ti– Add a few variable declarations

MPI_Status send_status;
MPI Request request;

– Change the main loop

MPI_Request request;

Change the main loop

for(i = 0; i < size; i++) {
MPI Isend(&token, 1, MPI INT, right, tag,_ _ g g

MPI_COMM_WORLD, &request);
MPI_Recv(&other, 1, MPI_INT, left, tag,

MPI_COMM_WORLD, &recv_status);
MPI Wait(&request &send status);MPI_Wait(&request, &send_status);

44Cray Private

MPI Buffers

• Application buffer
– User defined space that holds the data that will be sent

i dor received
– Usually an array of objects
MPI lib b ff• MPI library buffers
– Not visible to the programmer

Data in the application buffer may need to be copied to– Data in the application buffer may need to be copied to
or from library buffer space

Messages that are sent with MPI_Send(), MPI_Isend(), or
MPI Ssend() may be buffered according to the MPI standardMPI_Ssend() may be buffered, according to the MPI standard
The primary purpose of system buffer space is to enable
asynchronous communications

45Cray Private

Application Buffers

• Buffer space defined by the user and passed to MPI to
use for buffering

• MPI_Bsend
– Uses a user-defined buffer

• MPI_Buffer_attach
– Defines the buffer for all buffered sends

• MPI_Buffer_detach
– Completes all pending buffered sends and releases the

bufferbuffer
• MPI_Ibsend

– Nonblocking version of MPI BsendNonblocking version of MPI_Bsend

46Cray Private

Persistent Communications

• MPI_Send_init
Creates a request (like MPI_Isend) but does not start it
Persistent ready sync and buffered sends:Persistent ready, sync, and buffered sends:
• MPI_Rsend_init, MPI_Ssend_init, MPI_Bsend_init

• MPI Start_
Actually begins an operation

• MPI_Startall
Starts all in a collection

• MPI_Recv_init
P i t t i tPersistent receive request

• Potential saving:
Allocation of MPI RequestAllocation of MPI_Request
Validating and storing arguments

47Cray Private

MPI-2 MPI_Get and MPI_Put

• One-sided access from/to remote memory
– Remote Memory Access
– Similar to SHMEM

• Establish a “window” to the remote memory with
MPI C t i dMPI_Create_window
– Call MPI_Win_free to release the window

Window can be to any memory without “symmetric”– Window can be to any memory, without symmetric
restrictions

• Use MPI Win fence to synchronize all communication _ _ y
from/to a window

48Cray Private

Basic and Derived Datatypes

• The type of data that a function sends or receives is
specified as a datatype

MPI d t t ith b i d i d– MPI datatypes are either basic or derived
Basic datatypes correspond to the datatypes in the host
programming language - integers, floating-point numbers, and

f thso forth
Derived datatypes are created by a datatype constructor in MPI
• Derived datatypes consist of multiple basic datatypes whether

ti di ti (ti l d)contiguous or discontiguous (sequential or random)

49Cray Private

Basic MPI Datatypes in Fortran

MPI_INTEGER INTEGER

MPI_LOGICAL LOGICAL

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_DOUBLE_COMPLEX COMPLEX*16 (or COMPLEX*32)

MPI_INTEGER8 INTEGER*8

MPI_REAL8 REAL*8

50Cray Private

Basic MPI Datatypes in C

MPI_CHAR char

MPI_BYTE unsigned char (see the standard)

MPI_SHORT short

MPI_INT int

MPI_LONG long

MPI_UNSIGNED_CHAR unsigned char

MPI UNSIGNED SHORT unsigned shortMPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI UNSIGNED LONG unsigned longMPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI DOUBLE double_

51Cray Private

Derived Datatypes

• Any datatype created by a datatype constructor can be
used as input to another datatype constructor

Th f di ti d t l t b– Therefore any discontiguous data layout can be
represented in terms of a derived datatype

– MPI has the following kinds of datatype constructors :MPI has the following kinds of datatype constructors :
contiguous
vector/hvector
indexed/hindexed/indexed blockindexed/hindexed/indexed_block
struct
subarray
darray

52Cray Private

Processor Grids

• Some tools enable the programmer to view the
processor grid as a Cartesian plane and use (X , Y)
coordinates or column or row operations
– MPI
MPI_CARTE_CREATE defines the size and shape of the processor grid
MPI CART COORDS returns the coordinates of a processorMPI_CART_COORDS returns the coordinates of a processor
MPI_CART_SHIFT returns the rank of the neighbors in any given

dimension and distance

– BLACS
BLACS_GRIDINIT enables the user to define the size and shape of the

processor grid
BLACS_GRIDINFO returns the calling processor’s grid coordinates

Matrices are sent and received by grid coordinates

53Cray Private

Processor Grids

•
0 1 2 3

(0 0) (0 1) (0 2) (0,3)

Rank

Cartesian

4 5 6 7

(0,0) (0,1) (0,2) (0,3)Cartesian
coordinates

5 6 7
(1,0) (1,1) (1,2) (1,3)

8 9 10 11
(2,0) (2,1) (2,2) (2,3)

MPI_Carte_create (old, 2, dims, periods, 0, new)

3
4

1
1

54Cray Private

General Graph Topology

• MPI_Graph_create (comm_old, 8, index, edges, 0,
comm_graph)

3
1
2
4

Node
[0]
[1]

Node 0 connects to 1, 2, 4
0

4
6
7
10

4
0
0
3

[1]
[2]
[3]
[4]

Node 1 connects to 0 1 2 4

10
11
13
14

2
0
5
6

[]
[5]
[6]
[7]

3 5 6

6
4
4
7 Node 6 connects to 4, 7

7

6

55Cray Private

Heterogeneous Applications

• A heterogeneous application consists of multiple
binaries that run as one group and share communicator
MPI COMM WORLDMPI_COMM_WORLD

– Cray XT/XE Systems do not support any form of MPI
process creation (fork(), exec(), popen(), system()) so p (() () p p () y ())
MPI_Comm_spawn and MPI_Comm_spawn_multiple
generate runtime errors

S• Starting a heterogeneous application:
prog1 and prog2 start up with MPI_COMM_WORLD as an
intracommunicator between the two programs

56Cray Private

Aggregation to Reduce Latency

• Very small messages impose a large latency overhead
per byte of information

L t h d i littl th i f– Latency overhead increases very little as the size of
the message increases

• Collect many small messages into a single large• Collect many small messages into a single large
message
– Latency (usually) outweighs packing cost

• Save several intermediate local computational results for
a larger block exchange at the end

• Avoid unnecessary buffering
– Creates extra copying of large amounts of data

57Cray Private

Aggregation with Derived Data Types

• Use derived data types to describe a regular pattern of
data elements that can be moved at one time rather than
word by wordword-by-word

Not optimized on Cray XT/XE systems
– MPI_Type_vector_ _

Equally spaced instances of another datatype
MPICH optimizes

MPI Type struct with MPI UB entry– MPI_Type_struct with MPI_UB entry
Irregularly spaced instances of other data types
MPI does the pack/unpack of a single instance of the structure
MPI_UB is the type’s upper bound; it is set to describe the
“extent” size of the structure

58Cray Private

Aggregation in Collective Operations

– Use collective routines to broadcast or gather many
copies
U th ll ti f ti i t d f th i l t– Use the collective functions instead of the equivalent
point-to-point functions

gather, scatter, broadcast, reduce, scang
– Combine collective operations

Much cheaper to do one 2-element allreduce than two 1-
element allreduceselement allreduces

59Cray Private

Issues in Choosing a Decomposition

– One, versus two, versus three dimensions
– Minimize surface-to-volume ratio

Horizontal edges of 10x1000 array: 10 elements
Horizontal edges of 1000x10 array: 1000 elements

– More complex decompositions (e.g., hexagons in 2D)More complex decompositions (e.g., hexagons in 2D)
are possible, but usually not worthwhile

– Relatively small problems may not be worthwhile to
ll li l t d i tparallelize; latency may dominate

60Cray Private

Decomposition of Regular Meshes

• A regular mesh

Decomposition in coordinate directionsDecomposition in coordinate directions

61Cray Private

MPI Support for Regular Decompositions

• Using topology routines
MPI_Cart_create
MPI Cart shift / MPI Cart coordsMPI_Cart_shift / MPI_Cart_coords

– Why you should use the topology routines
Simple to use
Allow MPI implementation to provide low expected contention
layout of processes (if implementation is aware of nearest
neighbors; the Cray XT/XE implementation is not).

62Cray Private

Performance Issues of Decompositions

• Use of application’s scaling behavior to identify
problems

Fi d ti ti t d iti– Fixed execution time suggests a poor decomposition
Noncontiguous data may be the cause

– Actual choice of decomposition is complexActual choice of decomposition is complex
Spectral bisection
Coordinate based
Graph cuttingGraph cutting

63Cray Private

Load Balancing

• Small amounts of work imbalance lead to large losses in
performance

I l d b l i t l t th l ith t f– Is load balancing central to the algorithm or part of
performance tuning?

Central to the algorithm: in master/slave models, multilevel work g
masters (functional parallelism)
Part of performance tuning: load is balanced by decomposition
tuning

64Cray Private

Identifying Load Imbalances

• Identifying (distinguishing from latency/synchronization
overhead)

P l d b l f tt ti ll ti– Poor load balance focuses attention on collective
operations because the implicit synchronization of the
collective operation “equalizes” the time for each p q
process

Can generate the appearance of a good load balance if not timed
correctlyy

65Cray Private

Load Balancing Functional Parallelism

• Post receives before sends; otherwise, you may have to
handle unexpected messages.

• Multilevel masters
Work stealing

Using MPI S d (or MPI I d) to manage message• Using MPI_Ssend (or MPI_Issend) to manage message
flow
– Avoids overwhelming buffer operationsg p

• Fairness in message-passing
– Ensure that no slave is starved for the attention of its

master

66Cray Private

Implementing Fairness

• Use MPI_Waitsome to poll for replies
– Master’s code is:
for (i=0;i<n;i++)

MPI_Irecv(…, &r[i]);
while (not done) {
MPI W it (d i dMPI_Waitsome(n, r, &nready, i_ready,

statuses);
… Process r[i_ready] and repost

}

– Can double buffer requests/replies with MPI_Issend to
l b ff d ll l l

}

control buffer use and allow slaves to overlap
synchronization delays

67Cray Private

Load Balance by Tuning Decomposition

• Static data decomposition
– Different boundary behavior means you cannot simply

t “ h i t ” th t b l t h dcount “mesh points” that belong to each node
– Rule of thumb for a matrix: equalize the number of

elements without breaking rows (this is a goodelements without breaking rows (this is a good
compromise between perfection and workability)

68Cray Private

Changing the Algorithm

• Some algorithms are simply not good candidates for
parallelization

If l ith i i ti th– If an algorithm is an approximation, another
approximation may be a better choice (a different
physical model)p y)

– If an algorithm is part of an iterative method, another
iteration may be better (a different numerical model)

69Cray Private

Trade Communication for Computation

• Example: Solving a small linear system when all
processes need the results

Parallel solution is latency dominated – not worthwhile for smallParallel solution is latency dominated – not worthwhile for small
work; single solution using gather/bcast leaves processes idle
All-solve solution uses single gather (but has duplicate
computational work)computational work)

– For slowly converging algorithms, another form of
blocking: take a number of steps and then check
convergence (rather than checking at each iteration)convergence (rather than checking at each iteration)

– You can trade bandwidth/computation for latency
(unroll a compute loop once, do a single send of more
data, do duplicate computation)

70Cray Private

Changing the Algorithm: Loop Unrolling

• Classic algorithm change technique for improving
performance:
do I=1,10
call f(I)

exchange data for step I

• Changed to:

do I=1,10,2
call f(I)
call f(I+1)()
exchange data for steps I and I+1

71Cray Private

Synchronization

• The wait for other processes is one of the largest
consumers of wall clock time in very asynchronous
parallel programsparallel programs
– Use the MPI_barrier function only when necessary

Unnecessary MPI_barrier functions inserted as “insurance” _
can decrease performance substantially

– Use nonblocking sends/receives where useful local
work can be performed while polling for messagework can be performed while polling for message
completion

Finding enough local-only work to hide most messaging latency
can be difficultcan be difficult

72Cray Private

Overlap Communications/Computation

U bl ki ti• Use nonblocking operations:
• MPI_Isend, MPI_Irecv, MPI_Waitall

void ExchangeStart(Mesh *mesh)
{

/* send up, then receive from below */
MPI Irecv(xlocal, maxm, MPI DOUBLE, down nbr, 0, ring comm,MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

&mesh->rq[0]);
MPI_Irecv(xlocal + maxm * (lrow+1), maxm, MPI_DOUBLE, up_nbr, 1,

ring_comm, &mesh->rq[1]);
MPI Isend(xlocal + maxm * lrow, maxm, MPI DOUBLE, up nbr, 0,MPI_Isend(xlocal + maxm lrow, maxm, MPI_DOUBLE, up_nbr, 0,

ring_comm, &mesh->rq[2]);
MPI_Isend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm,

&mesh->rq[3]);
}}
void ExchangeEnd(Mesh *mesh)
{

MPI_Status statuses[4];
MPI Waitall (4, mesh->rq, statuses);MPI_Waitall (4, mesh >rq, statuses);

}

73Cray Private

Start Receives Before Sends

• MPI_Irecv, MPI_Isend, MPI_Waitall

MPI Status statuses[4];MPI_Status statuses[4];
MPI_Comm ring_comm;
MPI_Request r[4];
/* send up, then receive from below */
MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0,

ring_comm, &r[1]);
MPI_Irecv(xlocal + maxm * (lrow+1), maxm, MPI_DOUBLE,

up nbr 1 ring comm &r[3]);up_nbr, 1, ring_comm, &r[3]);
MPI_Isend(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

ring_comm, &r[0]);
/* send down, then receive from above *// , /
MPI_Isend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1,

ring_comm,&r[2]);
MPI_Waitall (4, r, statuses);
}}

74Cray Private

Start Receives Before Sends

void ExchangeInit(Mesh *mesh){
MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

&mesh->rq[0]);
MPI I (l l + * (l +1) MPI DOUBLEMPI_Irecv(xlocal + maxm * (lrow+1), maxm, MPI_DOUBLE,

up_nbr, 1, ring_comm, &mesh->rq[1]);
}
void Exchange(Mesh *mesh){
MPI_Status statuses[4];
/* send up and down, then receive */

MPI_Send(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,
ring comm);ring_comm);

MPI_Send(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1,
ring_comm);

MPI_Waitall (2, mesh->rq, statuses);
}
void ExchangeEnd(Mesh *mesh){
MPI_Cancel(&mesh->rq[0]);
MPI Cancel(&mesh >rq[1]);MPI_Cancel(&mesh->rq[1]);

}

75Cray Private

Use of MPI_Ssend

void Exchange(Mesh *mesh)
{
MPI_Status status;

/* send up then from below *//* send up, then from below */
MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0,

ring_comm, &rq);
MPI_Ssend(xlocal + maxm*lrow, maxm, MPI_DOUBLE, up_nbr, 0,

i)ring_comm);
MPI_Wait (&rq, &status);

/* send down, then receive from above */
MPI Irecv(xlocal + maxm * (lrow+1), maxm, MPI DOUBLE, _ _

up_nbr, 0, ring_comm);
MPI_Ssend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1,

ring_comm);
MPI Wait (&rq &status);MPI_Wait (&rq, &status);

}

76Cray Private

Timing With MPI_Wtime

• Using MPI_WTIME
– You can compute the elapsed time between two points

i MPI b i MPI Wtiin an MPI program by using MPI_Wtime
– MPI_Wtime granularity is 0.000001 sec. (see
MPI Wtick). You cannot time any period that is smallerMPI_Wtick). You cannot time any period that is smaller
than a microsecond with it.

– The clock in each node is independent of the clocks in
other nodes

– MPI_WTIME_IS_GLOBAL has value=1 if MPI_WTIME is
globally synchronizedglobally synchronized

Default is 0

77Cray Private

MPI-IO

• A key feature of MPI-IO is its ability to access
noncontiguous data with a single I/O function call

U i MPI' b i d i d d t t t d ib– Using MPI's basic or derived datatypes to describe:
The data layout in the user's buffer in memory
• This can be used, for example, when the user's buffer

represents a local array with a “ghost area” that will not be
written to the file.

The data layout in a file
• This can be used to describe the portion of a file the process

must access (also called a file view).
• Allowing any general, noncontiguous access pattern to be

tl t dcompactly represented.
– NERSC support staff recommends using higher level

libraries such as HDF5 or pnetCDF rather than MPI-IOp

78Cray Private

Parallel HDF and NetCDF

• Higher-level, open source APIs are available:
– Parallel HDF – Hierarchical Data Format

From the National Center for Supercomputing Applications
(NCSA)
• http://hdf.ncsa.uiuc.edu/Parallel_HDF/

– Parallel NetCDF - Network Common Data Form
From the Unidata Program Center in Boulder, CO
• my.unidata.ucar.edu/content/software/netcdf/index.htmlmy.unidata.ucar.edu/content/software/netcdf/index.html
• www-unix.mcs.anl.gov/parallel-netcdf/sc03_present.pdf

(relationship to MPI)

79Cray Private

