
Parallel Application
Scaling, Performance, and

Efficiency

NUG 2010
Supplemental Material
(David Skinner and Katie Antypas)

Overview

•  Review Some Basic MPI
•  Domain Decomposition
•  Load Balancing
•  Case Study: FLASH Scaling

Performance
•  Performance Monitoring with IPM
•  Many-core chips and the future of

parallel programming

Overview and History of MPI
•  Library (not language) specification
•  Goals

–  Portability
–  Efficiency
–  Functionality (small and large)

•  Most basic communications are 2 sided
•  Pros

–  Programmer has control at low level
–  Performance model understood
–  Can be very high performing

•  Cons
–  Programmer has control at low level
–  Error prone
–  Questions about memory usage as cores/node increase

Generic Message Passing

Processor 0
x = 5
send(&x, 1, 1)
x = 7

Processor 1

receive(&x, 1, 0)
print x

What rules are needed so that
processor 1 receives “5” and not “7”?

send(void* sendbuffer, int num_elements, int destination_rank)

receive(void* recvbuffer, int num_elements, int source_rank)

Example – John Mellor-Crummey, Rice University

Ways to Send Data

5

Sending
processor
“blocks” or
“waits” for
receive

Sending processor
completes call, but
must be careful not
to overwrite send
buffer until receive
operation has
completed

Sending process
completes call after
sendbuf has been
copied to another
buffer

Buffered

Non-Buffered

Blocking Non-blocking

Be careful with buffering …

Processor 0
do i=1, 1000
 produce_data(&x)
 send(&x, 1, 1)
end do

Processor 1
do i=1, 1000
 receive(&x, 1, 0)
 consume(&x)
end do

What could go wrong with buffered send?

send(void* sendbuffer, int num_elements, int destination_rank)

receive(void* recvbuffer, int num_elements, int source_rank)

Example – John Mellor-Crummey, Rice University

Basic Point to Point

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0) {
 MPI_Send(&work, 1, MPI_INT, dest, TAG, MPI_COMM_WORLD);
 } else {
 MPI_Recv(&result, 1, MPI_INT, src, TAG, MPI_COMM_WORLD,

&status);
 }

•  Blocking – Non-buffered
•  MPI_Send()
•  MPI_Recv()

Non-Blocking Operations

•  MPI_Isend()
•  MPI_Irecv()
•  “I” is for immediate
•  Paired with MPI_Test()/MPI_Wait()

Non-Blocking Operations

 MPI_Comm_rank(comm,&rank);

 if (rank == 0) {
 MPI_Isend(sendbuf,count,MPI_REAL,1,tag,comm,&request);
 /* Do some computation */
 MPI_Wait(&request,&status);
 } else {
 MPI_Irecv(recvbuf,count,MPI_REAL,0,tag,comm,&request);
 /* Do some computation */
 MPI_Wait(&request,&status);
 }

Collective Operations

•  May be layered on point to point
•  May use tree communication patterns

for efficiency
•  Synchronization! (No non-blocking

collectives)

Collective Operations

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, comm);

O(P) O(log P)

Quiz: MPI_Send()

•  After I call MPI_Send()
– The recipient has received the message
–  I have sent the message
–  I can write to the message buffer without

corrupting the message
•  I can write to the message buffer

Quiz: MPI_Isend()

•  After I call MPI_Isend()
– The recipient has started to receive the

message
–  I have started to send the message
–  I can write to the message buffer without

corrupting the message
•  None of the above (I must call

MPI_Test() or MPI_Wait())

Minimizing Latency

•  Collect small messages together (if you
can)
– One 1024-byte message instead of 1024

one-byte messages
•  Minimize other overhead (e.g., copying)
•  Overlap with computation (if you can)

Example: Domain Decomposition

Naïve Approach

 while (!done) {
 exchange(D, neighbors, myrank);
 dored(D);
 exchange(D, neighbors, myrank);
 doblack(D);
 }

 void exchange(Array D, int *neighbors, int myrank) {
 for (i = 0; i < 4; i++)
 MPI_send(…);
 for (i = 0; i < 4; i++)
 MPI_recv(…);
 }

Naïve Approach

•  Deadlock! (Maybe)
•  Can fix with careful coordination of

receiving versus sending on alternate
processes

•  But this can still serialize

MPI_Sendrecv()

 while (!done) {
 exchange(D, neighbors, myrank);
 dored(D);
 exchange(D, neighbors, myrank);
 doblack(D);
 }

 void exchange(Array D, int *neighbors, int myrank) {
 for (i = 0; i < 4; i++) {
 MPI_Sendrecv(…);
 }
 }

Immediate Operations

 while (!done) {
 exchange(D, neighbors, myrank);
 dored(D);
 exchange(D, neighbors, myrank);
 doblack(D);
 }

 void exchange(Array D, int *neighbors, int myrank) {
 for (i = 0; i < 4; i++) {
 MPI_Isend(…);
 MPI_Irecv(…);
 }
 MPI_Waitall(…);
 }

Basic Functions

MPI_Init Initializes MPI

MPI_Comm_size Returns # tasks in communicator
MPI_Comm_rank Returns ID of current proc

 MPI_Send sends data
 MPI_Recv receives data

MPI_Reduce reduce data to single processor
MPI_Allreduce reduce all procs data to all procs
MPI_Bcast broadcasts to all procs

MPI_Finalize Closes MPI

20

Load Balancing

Load Balance : cartoon

The Universal Parallel
Science App Unbalanced:

Balanced:

Time saved by load balance

+

~All apps come down to
the same basic pattern. Ok,
Maybe there is no I/IO.

Load Balance: real code

Sync

Flops
Exchange

Time

M
P

I R
an

k

Load Balance : performance data

MPI ranks sorted by total communication time

Communication Time: 64 tasks show 200s, 960 tasks show 230s

Load Balance: ~code

while(1) {
 do_flops(Ni);
 MPI_Alltoall();
 MPI_Allreduce();
}

960
x

64
x

Load Balance : analysis

•  The 64 slow tasks (with more compute
work) cause 30 seconds more
“communication” in 960 tasks

•  This leads to 28800 CPU*seconds (8
CPU*hours) of unproductive computing

•  All imbalance requires is one slow task
and a synchronizing collective!

•  Parallel computers allow you to scale
both your computation and your load
imbalance.

Load Balance : FFT

When is imbalance good?

Dynamical Load Balance:
Motivation

Time

M
P

I
R

an
k

 Sync

Flops
Exchange

Load Balance: Summary

• Imbalance most often a byproduct of data decomposition
• Must be addressed before further MPI tuning can happen
• Good software exists for graph partitioning / remeshing

• Dynamical load balance may be required for adaptive codes

Scaling Study

Scaling: definitions

•  Scaling studies involve changing the
degree of parallelism.

•  Strong scaling
– Fixed problem size, more computer

•  Weak scaling
–  Problem size grows with concurrency

Parallel Performance
Measurements

•  Speed up = Tserial /Tparallel(n)
– Tserial = 100 secs
– Tparallel(2) = 80 secs
– 25% speed up

•  Efficiency = Tserial/(n*Tparallel(n))
– 100/(2*80) =
– 62% efficiency

•  Perfect Scaling?
Be aware there are multiple
definitions for these terms

FLASH Sedov 3d problem with Particles

FLASH Sedov 3d problem with Particles

Scaling: Analysis

•  What is happening in the 8192 case?
–  Compute per core decreasing
–  Synchronization rate increasing
–  Surface to volume ratio increasing

•  What else could happen?
–  Algorithmic scaling may change
–  Maybe we hit an architectural boundary in the

machine (switch level, mid-plane, queue, etc.)
–  Maybe depleted some buffer space resource
–  Many more things…performance debugging at scale

is detective work in the application + architecture
space

Parallel programs are easier to
mess up than serial ones. Here
are a couple common pitfalls.

What’s wrong here?

Is MPI_Barrier time bad? Probably. Is it avoidable?
~three cases:
1) The stray / unknown / debug barrier
2) The barrier which is masking compute imbalance
3) Barriers used for I/O ordering

MPI_Barrier

How to use IPM : basics

Many of the graphs in this talk were generated
with a tool called IPM – Integrated Performance
Monitoring: free and easy to install
http://ipm-hpc.sourceforge.net/

On galera
1) >> mpicc test.c -lipm
2) Run job as usual
3) Appended to your output file

How to use IPM : basics
##IPMv0.982##

command : unknown (completed)
host : n9-1-6/x86_64_Linux mpi_tasks : 4 on 1 nodes
start : 07/19/10/14:34:24 wallclock : 0.013101 sec
stop : 07/19/10/14:34:24 %comm : 11.34
gbytes : 0.00000e+00 total gflop/sec : 0.00000e+00 total

region : * [ntasks] = 4

[total] <avg> min max
entries 4 1 1 1
wallclock 0.0453982 0.0113496 0.00918508 0.0131011
user 0.161974 0.0404935 0.035994 0.045993
system 0.123979 0.0309947 0.023996 0.034994
mpi 0.00594119 0.0014853 0.000761837 0.00176443
%comm 11.3372 5.82577 19.2098
gflop/sec 0 0 0 0
gbytes 0 0 0 0

[time] [calls] <%mpi> <%wall>
MPI_Allreduce 0.00343561 372 57.83 7.57
MPI_Recv 0.00194091 558 32.67 4.28
MPI_Send 0.000562498 558 9.47 1.24
MPI_Comm_size 1.21177e-06 4 0.02 0.00
MPI_Comm_rank 9.65199e-07 4 0.02 0.00

Profiling Codes Using IPM

An Unbalanced Code

Processors

W
or

k

A Balanced Code

Processors

W
or

k

Communication Patterns

Communication Patterns

Low Degree Regular Mesh
Communication Patterns

P2P Topology Overview

0

Max

To
ta

l M
es

sa
ge

 V
ol

um
e

Parallel Programming in the
future with many-core

architectures.

Can MPI everywhere survive?

48

Slides for John Shalf’s Future Architecture’s Talk

Basic Multi-core Compute Node
Architecture

Core 0 Core 1

Core 2 Core 3

Processor 0

Main Memory

Core 4 Core 5

Core 6 Core 7

Processor 1

Main Memory

NUMA node 0 NUMA node 1

Interconnect
Chip

Coming Soon ….

Core 0 Core 1

Core 6

Core 2

Processor 0

Main Memory

Processor 1

Main Memory

NUMA node 0 NUMA node 1

Interconnect
Chip

Core 3 Core 4 Core 5

Core 7 Core 8

Core 9 Core 10 Core 11

Core12 Core 13

Core 18

Core 14

Core 15 Core 16 Core 17

Core 19 Core 20

Core 12 Core 22 Core 23

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in
Thousands)

Trend #3: Multicore / Manycore

•  Power density limit single
processor clock speeds

•  Cores per chip is growing
•  Simple doubling of cores is

not enough to reach
exascale
–  Also a problem in data

centers, laptops, etc.
•  Two paths to exascale:

–  Accelerators (GPUs)
–  Low power embedded cores
–  (Not x86 clusters)

51

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)
Frequency (MHz)
Power (W)
Cores

What’s Wrong with MPI Everywhere
•  We can run 1 MPI process per core (flat model for parallelism)

–  This works now and will work for a while
–  But this is wasteful of intra-chip latency and bandwidth (100x lower

latency and 100x higher bandwidth on chip than off-chip)
–  Model has diverged from reality (the machine is NOT flat)

•  How long will it continue working?
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
–  Depends on performance expectations

•  What is the problem?
–  Latency: some copying required by semantics
–  Memory utilization: partitioning data for separate address space

requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the points are

surface points, probably replicated
–  Memory bandwidth: extra state means extra bandwidth
–  Weak scaling: success model for the “cluster era;” will not be for the

many core era -- not enough memory per core
–  Heterogeneity: MPI per CUDA thread-block?

However: MPI will likely persist

•  Obviously MPI will not disappear in five years

•  By 2014 there will be 20 years of legacy software in
MPI

•  Thus far, new systems are not sufficiently different
to lead to new programming model

•  MPI can evolve – (like Fortran, the Fortran from 50
years ago is very different from the Fortran used
today)

Why use Hierarchical
(hybrid) model for parallelism?

•  The machine is not flat
–  We lose a lot of performance by lying to ourselves

•  Target: Get Strong scaling on-chip and weak-scaling
off-chip
–  100x higher bandwidth between cores on chip
–  100x lower latency between cores on chip
–  If you pretend that every core is a peer (each is just a

generic MPI rank) you are leaving a lot of performance on
the table

–  You cannot domain-decompose things forever (cannot
weak-scale forever)

•  Potentially MPI between nodes and X within node
–  Where X could be OpenMP, UPC, OpenCL, CUDA, etc…

What is X?
•  X is it OpenMP?

–  Lots of synchronization
–  Poor expression of locality (will not scale)

•  X might be UPC or PGAS language
–  Explicit definition of local vs. remote
–  Very lightweight communication

•  X might be CUDA or OpenCL
–  OpenCL is very CUDA-like cross-platform extension to C

language
–  CUDA is also being extended to also taret multicore

•  For all X
–  Define better way to express fine-grained parallelism on-chip
–  must rigorously determine semantics for interoperation with

MPI
–  Must interoperate with numerical methods that target strong

scaling

MPI+X: Requirements for X
•  Must be able to write once and run everywhere

–  Cannot develop architecture-specific code
–  Don’t want to write code for each target! (just once

please)
•  Needs to be ubiquitous

–  Most people start a new code on a laptop and graduate
to HPC systems

–  The complete development environment must be in both
places (freely available)

•  Must emphasize ability to deliver strong-scaling
on-chip to replace clock-frequency scaling
–  Data parallelism might not be sufficient
–  We cannot rely on domain-decomposition for speed-up

ad-infinitum (nothing to take up slack for CFL)
–  Functional partitioning (Happening at macro-scale with

frameworks At micro-scale, requires bounded side-effects! its not
magic)

Summary
•  Strong scaling on chip

–  Memory is shrinking per chip and clocks stalled
–  Solutions: UPC on-chip, OpenCL, domain-specific code-

generation
–  Not-solutions: CUDA, OpenMP (not locality aware)

•  Weak scaling between chips
–  Memory size is staying same per node
–  Probably MPI, but could be UPC, PGAS or other distributed

memory locality aware models
•  Frameworks for managing big programming teams

–  Should focus on modularity and agreement on interfaces
–  Benefits from functional semantics

•  Languages for fine-grained parallelism + correctness
–  Defining exec model for fine-grained explicit parallelism is

the challenge of our decade

More Info

•  The Berkeley View/Parlab
–  http://view.eecs.berkeley.edu
–  http://parlab.eecs.berkeley.edu/

•  NERSC System Architecture Group
–  http://www.nersc.gov/projects/SDSA

•  LBNL Future Technologies Group
 http://crd.lbl.gov/ftg

Extra

59

NERSC is enabling new high quality science across
disciplines, with over 1,600 refereed publications last year

60

Cover Stories from NERSC Research

