
www.hdfgroup.org

The HDF Group

Intro to HDF5
Katie Antypas

NERSC
Tutorial in part from HDF Group

NUG 2010
Berkeley, CA

Oct 18th, 2010
2010 1 NUG 2010

Serial I/O

0 1 2 3 4

File

processors

•  Each processor sends its data to the
master who then writes the data to a file

5

•  Advantages ?

•  Disadvantages ?

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

• Advantages ?

• Disadvantages ?

5

File

• Each processor writes its own data to a separate file

Parallel I/O Single-file

0 1 2 3 4

File

processors

• Advantages ?

• Disadvantages ?

5

• Each processor writes its own data to the same file using
MPI-IO mapping

What is a High Level Parallel I/O
Library?

•  An API which helps to express scientific
simulation data in a more natural way
–  Multi-dimensional data, labels and tags, non-

contiguous data, typed data
•  Typically sits on top of MPI-IO layer and

can use MPI-IO optimizations
•  Offer

–  Simplicity for visualization and analysis
–  Portable formats - can run on one machine and

take output to another
–  Longevity - output will last and be accessible

with library tools and no need to remember
version number of code

Common Storage Formats

•  ASCII:
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Non-portable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Parallel NetCDF
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API

Many NERSC users
at this level. We

would like to
encourage users to

transition to a higher
IO library

But what about
performance?

•  Hand tuned I/O for a particular application and
architecture will likely perform better, but …

•  Purpose of I/O libraries is not only portability, longevity,
simplicity, but productivity

•  Using own binary file format forces user to understand
layers below the application to get optimal IO
performance

•  Every time code is ported to a new machine or
underlying file system is changed or upgraded, user is
required to make changes to improve IO performance

•  Let other people do the work
–  HDF5 can be optimized for given platforms and file systems by

library developers
•  Goal is for shared file performance to be ‘close enough’

www.hdfgroup.org

HDF5 File is a Container of Objects

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOut Viz

HDF5 groups
and links
organize
data objects.

8

www.hdfgroup.org

HDF5 Dataset

Data Metadata
Dataspace

3
Dim_2 = 5
Dim_1 = 4

Time = 32.4
Pressure = 987

Temp = 56

Chunked

Compressed

Dim_3 = 7

Integer

9

www.hdfgroup.org

HDF5 Dataset

Dataspace: Rank = 2 
 Dimensions = 5 x 3

10

Datatype: 16-byte integer 

3

5

 V

www.hdfgroup.org

HDF5 Datatypes

 The HDF5 datatype describes how to interpret
individual data elements.
 HDF5 datatypes include:
−  integer, float, unsigned, bitfield, …
− user-definable (e.g., 13-bit integer)
− variable length types (e.g., strings)
− references to objects/dataset regions
− enumerations - names mapped to integers
− opaque
− compound (similar to C structs)

11

www.hdfgroup.org

HDF5 Pre-defined Datatype Identifiers
HDF5 defines set of Datatype Identifiers per HDF5

session.
For example:

 C Type HDF5 File Type HDF5 Memory Type
 int H5T_STD_I32BE H5T_NATIVE_INT

 H5T_STD_I32LE

 float H5T_IEEE_F32BE H5T_NATIVE_FLOAT
 H5T_IEEE_F32LE

 double H5T_IEEE_F64BE H5T_NATIVE_DOUBLE
 H5T_IEEE_F64LE

12

www.hdfgroup.org

HDF5 Defined Types

For portability, the HDF5 library has its own defined
types:

 hid_t: object identifiers (native integer)
 hsize_t: size used for dimensions (unsigned long or

 unsigned long long)
 herr_t: function return value

For C, include hdf5.h in your HDF5 application.

13

www.hdfgroup.org

Basic Functions
H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create fileSpace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Sselect_hyperslab select subsections of data

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close fileSpace

H5Fclose close File

14
NOTE: Order not strictly specified.

www.hdfgroup.org

Logistics

15

•  Log into franklin or carver
•  “ssh franklin.nersc.gov” or “ssh carver.nersc.gov”
•  “cp /project/projectdirs/training/pHDF5_examples.tar

$SCRATCH”
•  “cd $SCRATCH”
•  “tar xvf pHDF5_examples.tar”
•  Here you will find the code examples, submission

scripts and detailed instructions in
“instructions_carver.txt” or “instructions_franklin.txt”

www.hdfgroup.org

The HDF Group

Example :
write_grid_rows.c

(or fortran90 version if you prefer)

16

www.hdfgroup.org 17

P0

P1
File

Example 1: Writing dataset by rows

P2

P3
NY

NX

www.hdfgroup.org 18

Writing by rows: Output of h5dump

HDF5 ”grid_rows.h5" {
GROUP "/" {
 DATASET "dataset1" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (8, 5) / (8, 5) }
 DATA {
 18, 18, 18, 18, 18,
 18, 18, 18, 18, 18,
 19, 19, 19, 19, 19,
 19, 19, 19, 19, 19,
 20, 20, 20, 20, 20,
 20, 20, 20, 20, 20,
 21, 21, 21, 21, 21,
 21, 21, 21, 21, 21
 }
 }
}

www.hdfgroup.org

Initialize the file for parallel access

/* first initialize MPI */

/* create access property list */
plist_id = H5Pcreate(H5P_FILE_ACCESS);

/* necessary for parallel access */
status = H5Pset_fapl_mpio(plist_id,
MPI_COMM_WORLD, MPI_INFO_NULL);

/* Create an hdf5 file */
file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC,
H5P_DEFAULT, plist_id);

status = H5Pclose(plist_id);
19

www.hdfgroup.org

Create file filespace and dataset

/* initialize local grid data */

/* Create the filespace */

dimsf[0] = NX;
dimsf[1] = NY;

filespace = H5Screate_simple(RANK, dimsf,NULL);

/* create a dataset */
dset_id = H5Dcreate(file_id, "dataset1”,
H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

20

www.hdfgroup.org

Create Property List

/* Create property list for collective dataset
write. */

plist_id = H5Pcreate(H5P_DATASET_XFER);

/* The other option is HDFD_MPIO_INDEPENDENT */
H5Pset_dxpl_mpio(plist_id,H5FD_MPIO_COLLECTIVE);

21

www.hdfgroup.org 22

P0

P1
File

Calculate Offsets

P2

P3
NY

NX

Every processor has a 2d array, which holds the number of
blocks to write and the starting offset

count[0], count[1]
offet[0][offset[1]

www.hdfgroup.org 23

Memory File

Example 1: Writing dataset by rows

count[0] = dimsf[0]/num_procs
count[1] = dimsf[1];
offset[0] = my_proc * count[0]; /* = 2 */
offset[1] = 0;

count[0]

count[1]

offset[0]

offset[1]

Process 1

www.hdfgroup.org 24

Writing and Reading Hyperslabs

•  Distributed memory model: data is split among
processes

•  PHDF5 uses HDF5 hyperslab model
•  Each process defines memory and file

hyperslabs
•  Each process executes partial write/read call

•  Collective calls
•  Independent calls

www.hdfgroup.org 25

Create a Memory Space select hyperslab

/* Create the local memory space */
memspace = H5Screate_simple(RANK, count, NULL);

filespace = H5Dget_space (dset_id);

/* Create the hyperslab -- says how you want to
lay out data */

status = H5Sselect_hyperslab(filespace,
H5S_SELECT_SET, offset, NULL, count, NULL);

www.hdfgroup.org 26

Write Data

status = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE,
memspace, filespace, plist_id, grid_data);

Identifier for dataset
“dataset1”

Datatype

Access Properties:
We choose collective.
This is where other
optimizations could be
added.

Data buffer

Then close every dataspace and file space that was opened

www.hdfgroup.org 27

How to Compile PHDF5 Applications

•  h5pcc – HDF5 C compiler command
•  Similar to mpicc

•  h5pfc – HDF5 F90 compiler command
•  Similar to mpif90

•  To compile:
•  % h5pcc h5prog.c
•  % h5pfc h5prog.f90

www.hdfgroup.org 28

P0

P1

File

Example 2: Writing dataset by columns

28

www.hdfgroup.org 29

Writing by columns: Output of h5dump,

HDF5 ”grid_cols.h5" {
GROUP "/" {
 DATASET ”dataset1" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (4, 6) / (8, 6) }
 DATA {
 1, 2, 10, 20, 100, 200,
 1, 2, 10, 20, 100, 200,
 1, 2, 10, 20, 100, 200,
 1, 2, 10, 20, 100, 200

 }
 }
 }
}

www.hdfgroup.org 30

P0

P1
File

Example 2: Writing dataset by columns

30

• More complicated pattern, describe data layout with 4 arrays
•  offset[] - starting position
•  stride[] - spacing to the next element
• count[] - how many times to write a contiguous block
• block[] - how many contiguous elements to write

NY

NX

www.hdfgroup.org 31

Example 2: Writing dataset by column

Process 1

Process 0

File Memory

block[1]

block[0]

P0 offset[1]

P1 offset[1]
stride[1]

dimsm[0]
dimsm[1]

www.hdfgroup.org 32

Example 2: Writing dataset by column

 /* Each process defines hyperslab in
 the file */

 count[0] = 1;
 count[1] = dimsm[1];
 offset[0] = 0;
 offset[1] = my_proc;
 stride[0] = 1;

 stride[1] = 2;
 block[0] = dimsm[0];
 block[1] = 1;

 /* Each process selects hyperslab.
 filespace = H5Dget_space(dset_id); */

 H5Sselect_hyperslab(filespace,
 H5S_SELECT_SET, offset, stride,
 count, block);

www.hdfgroup.org 33

Example 3: Writing dataset by pattern

Process 0

Process 2

File

Process 3

Process 1

Memory

NY

NX

www.hdfgroup.org 34

Writing by Pattern: Output of h5dump

HDF5 ”grid_pattern.h5" {
GROUP "/" {
 DATASET ”Dataset1" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (8, 4) / (8, 4) }
 DATA {
 1, 3, 1, 3,
 2, 4, 2, 4,
 1, 3, 1, 3,
 2, 4, 2, 4,
 1, 3, 1, 3,
 2, 4, 2, 4,
 1, 3, 1, 3,
 2, 4, 2, 4
 }
 }
}

www.hdfgroup.org 35

Example 3: Writing dataset by pattern

Process 0

Process 2

File

Process 3

Process 1

Memory

• More complicated pattern, describe data layout with 4 arrays
•  offset[] - starting position
•  stride[] - spacing to the next element
• count[] - how many times to write a contiguous block
• block[] - how many contiguous elements to write

NY

NX

www.hdfgroup.org 36

Process 2

File

Example 3: Writing dataset by pattern

offset[0] = 0;
offset[1] = 1;
count[0] = 4;
count[1] = 2;
stride[0] = 2;
stride[1] = 2;

Memory

stride[0]

stride[1]

offset[1]

count[1]

www.hdfgroup.org 37

Example 3: Writing by pattern

 90 /* Each process defines dataset in memory and
 91 * writes it to the hyperslab in the file.
 92 */
 93 count[0] = 4;
 94 count[1] = 2;
 95 stride[0] = 2;
 96 stride[1] = 2;
 97 if(my_proc == 0) {
 98 offset[0] = 0;
 99 offset[1] = 0;
 100 }
 101 if(my_proc == 1) {
 102 offset[0] = 1;
 103 offset[1] = 0;
 104 }
 105 if(my_proc == 2) {
 106 offset[0] = 0;
 107 offset[1] = 1;
 108 }
 109 if(my_proc == 3) {
 110 offset[0] = 1;
 111 offset[1] = 1;
 112 }

www.hdfgroup.org 38

P0 P2 File

Example 4: Writing dataset by chunks

P1 P3

NY

NX

www.hdfgroup.org 39

P0 P2

File

Example 4: Writing dataset by chunks

P1 P3

NY

NX

• More complicated pattern, describe data layout with 4 arrays
•  offset[] - starting position
•  stride[] - spacing to the next element
• count[] - how many times to write a contiguous block
• block[] - how many contiguous elements to write

www.hdfgroup.org 40

Writing by Chunks: Output of h5dump

HDF5 ”write_chunks.h5" {
GROUP "/" {
 DATASET ”Dataset1" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (8, 4) / (8, 4) }
 DATA {
 1, 1, 2, 2,
 1, 1, 2, 2,
 1, 1, 2, 2,
 1, 1, 2, 2,
 3, 3, 4, 4,
 3, 3, 4, 4,
 3, 3, 4, 4,
 3, 3, 4, 4
 }
 }
}

www.hdfgroup.org 41

Example 4: Writing dataset by chunks

File Process 2: Memory

block[0] = chunk_dims[0];
block[1] = chunk_dims[1];
offset[0] = chunk_dims[0];
offset[1] = 0;

chunk_dims[0]

chunk_dims[1]

block[0]

block[1]

offset[0]

offset[1]

www.hdfgroup.org 42

Example 4: Writing by chunks

 97 count[0] = 1;
 98 count[1] = 1 ;
 99 stride[0] = 1;
 100 stride[1] = 1;
 101 block[0] = chunk_dims[0];
 102 block[1] = chunk_dims[1];
 103 if(mpi_rank == 0) {
 104 offset[0] = 0;
 105 offset[1] = 0;
 106 }
 107 if(mpi_rank == 1) {
 108 offset[0] = 0;
 109 offset[1] = chunk_dims[1];
 110 }
 111 if(mpi_rank == 2) {
 112 offset[0] = chunk_dims[0];
 113 offset[1] = 0;
 114 }
 115 if(mpi_rank == 3) {
 116 offset[0] = chunk_dims[0];
 117 offset[1] = chunk_dims[1];
 118 }

www.hdfgroup.org

Fortran Tips and Tricks

43

•  Fortran interfaces require an extra initialization
and finalize call:
•  CALL h5open_f(error)
•  CALL h5close_f(error)

•  Some differences in argument order to API
from C version

•  Remember Fortran arrays start at 1 not 0.
•  Remember row and column order switched

from C programs. See write_grid_rows.f90 for
example

www.hdfgroup.org 44

P0

P1
File

Problem 1: Writing dataset by rows 3d

P2

P3

www.hdfgroup.org 45

P0

P1

File

Problem 2: Writing dataset by cols 3d

www.hdfgroup.org

 HDF5 Compile Scripts

•  h5pcc – HDF5 C compiler command
•  h5pfc – HDF5 F90 compiler command

To compile:
% h5pcc h5prog.c
% h5pfc h5prog.f90

46

www.hdfgroup.org

The HDF Group

47

Parallel HDF5 in a little more
detail

www.hdfgroup.org 48

MPI-IO vs. HDF5

•  MPI-IO is an Input/Output API.
•  It treats the data file as a “linear byte stream”

and each MPI application needs to provide its
own file view and data representations to
interpret those bytes.

•  All data stored are machine dependent except
the “external32” representation.

•  External32 is defined in Big Endianness
•  Little endian machines have to do the data

conversion in both read or write operations.
•  64bit sized data types may lose information.

www.hdfgroup.org 49

MPI-IO vs. HDF5 Cont.

•  HDF5 is a data management software.
•  It stores the data and metadata according to

the HDF5 data format definition.
•  HDF5 file is self-described.
•  Each machine can store the data in its own

native representation for efficient I/O without
loss of data precision.

•  Any necessary data representation conversion
is done by the HDF5 library automatically.

www.hdfgroup.org 50

Examples of PHDF5 API

•  Examples of PHDF5 collective API
•  File operations: H5Fcreate, H5Fopen, H5Fclose
•  Objects creation: H5Dcreate, H5Dopen, H5Dclose
•  Objects structure: H5Dextend (increase dimension

sizes)
•  Array data transfer can be collective or

independent
•  Dataset operations: H5Dwrite, H5Dread
•  Collectiveness is indicated by function parameters, not

by function names as in MPI API

www.hdfgroup.org 51

What Does PHDF5 Support ?

•  After a file is opened by the processes of a
communicator
•  All parts of file are accessible by all processes
•  All objects in the file are accessible by all

processes
•  Multiple processes may write to the same data

array
•  Each process may write to individual data array

www.hdfgroup.org 52

Collective vs. Independent Calls

•  MPI definition of collective call
•  All processes of the communicator must

participate in the right order. E.g.,
•  Process1 Process2
•  call A(); call B(); call A(); call B(); **right**
•  call A(); call B(); call B(); call A(); **wrong**

•  Independent means not collective
•  Collective is not necessarily synchronous

www.hdfgroup.org 53

Programming Restrictions

•  Most PHDF5 APIs are collective
•  PHDF5 opens a parallel file with a

communicator
•  Returns a file-handle
•  Future access to the file via the file-handle
•  All processes must participate in collective

PHDF5 APIs
•  Different files can be opened via different

communicators

www.hdfgroup.org 54

Programming model for creating and accessing a file

•  HDF5 uses access template object
(property list) to control the file access
mechanism

•  General model to access HDF5 file in
parallel:
•  Setup MPI-IO access template (access

property list)
•  Open File
•  Access Data
•  Close File

www.hdfgroup.org 55

Setup MPI-IO access template

Each process of the MPI communicator creates an
access template and sets it up with MPI parallel
access information
C:

herr_t H5Pset_fapl_mpio(hid_t plist_id,
 MPI_Comm comm, MPI_Info info);

F90:

 h5pset_fapl_mpio_f(plist_id, comm, info)
 integer(hid_t) :: plist_id
 integer :: comm, info

plist_id is a file access property list identifier

www.hdfgroup.org 56

C Example Parallel File Create

 23 comm = MPI_COMM_WORLD;
 24 info = MPI_INFO_NULL;
 26 /*
 27 * Initialize MPI
 28 */
 29 MPI_Init(&argc, &argv);
 33 /*
 34 * Set up file access property list for MPI-IO access
 35 */
 ->36 plist_id = H5Pcreate(H5P_FILE_ACCESS);
 ->37 H5Pset_fapl_mpio(plist_id, comm, info);
 38
 ->42 file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC,
 H5P_DEFAULT, plist_id);
 49 /*
 50 * Close the file.
 51 */
 52 H5Fclose(file_id);
 54 MPI_Finalize();

www.hdfgroup.org 57

F90 Example Parallel File Create
 23 comm = MPI_COMM_WORLD
 24 info = MPI_INFO_NULL
 26 CALL MPI_INIT(mpierror)
 29 !
 30 ! Initialize FORTRAN predefined datatypes
 32 CALL h5open_f(error)
 34 !
 35 ! Setup file access property list for MPI-IO access.
 ->37 CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)
 ->38 CALL h5pset_fapl_mpio_f(plist_id, comm, info, error)
 40 !
 41 ! Create the file collectively.
 ->43 CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id,
 error, access_prp = plist_id)
 45 !
 46 ! Close the file.
 49 CALL h5fclose_f(file_id, error)
 51 !
 52 ! Close FORTRAN interface
 54 CALL h5close_f(error)
 56 CALL MPI_FINALIZE(mpierror)

www.hdfgroup.org 58

Creating and Opening Dataset

•  All processes of the communicator open/
close a dataset by a collective call
 C: H5Dcreate or H5Dopen; H5Dclose
 F90: h5dcreate_f or h5dopen_f; h5dclose_f

•  All processes of the communicator must
extend an unlimited dimension dataset
before writing to it
 C: H5Dextend
 F90: h5dextend_f

www.hdfgroup.org 59

C Example: Create Dataset

 56 file_id = H5Fcreate(…);
 57 /*
 58 * Create the dataspace for the dataset.
 59 */
 60 dimsf[0] = NX;
 61 dimsf[1] = NY;
 62 filespace = H5Screate_simple(RANK, dimsf, NULL);
 63
 64 /*
 65 * Create the dataset with default properties collective.
 66 */
 ->67 dset_id = H5Dcreate(file_id, “dataset1”, H5T_NATIVE_INT,
 68 filespace, H5P_DEFAULT);

 70 H5Dclose(dset_id);
 71 /*
 72 * Close the file.
 73 */
 74 H5Fclose(file_id);

www.hdfgroup.org 60

F90 Example: Create Dataset

 43 CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id,
 error, access_prp = plist_id)
 73 CALL h5screate_simple_f(rank, dimsf, filespace, error)
 76 !
 77 ! Create the dataset with default properties.
 78 !
 ->79 CALL h5dcreate_f(file_id, “dataset1”, H5T_NATIVE_INTEGER,
 filespace, dset_id, error)
 90 !
 91 ! Close the dataset.
 92 CALL h5dclose_f(dset_id, error)
 93 !
 94 ! Close the file.
 95 CALL h5fclose_f(file_id, error)

www.hdfgroup.org 61

Accessing a Dataset

•  All processes that have opened dataset may
do collective I/O

•  Each process may do independent and
arbitrary number of data I/O access calls
•  C: H5Dwrite and H5Dread
•  F90: h5dwrite_f and h5dread_f

www.hdfgroup.org 62

Programming model for dataset access

•  Create and set dataset transfer property
•  C: H5Pset_dxpl_mpio

•  H5FD_MPIO_COLLECTIVE
•  H5FD_MPIO_INDEPENDENT (default)

•  F90: h5pset_dxpl_mpio_f
•  H5FD_MPIO_COLLECTIVE_F
•  H5FD_MPIO_INDEPENDENT_F (default)

•  Access dataset with the defined transfer
property

www.hdfgroup.org 63

C Example: Collective write

 95 /*
 96 * Create property list for collective dataset write.
 97 */
 98 plist_id = H5Pcreate(H5P_DATASET_XFER);
 ->99 H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
 100

www.hdfgroup.org 64

F90 Example: Collective write

 88 ! Create property list for collective dataset write
 89 !
 90 CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error)
 ->91 CALL h5pset_dxpl_mpio_f(plist_id, &
 H5FD_MPIO_COLLECTIVE_F, error)
 92
 93 !
 94 ! Write the dataset collectively.
 95 !
 96 CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, &
 error, &
 file_space_id = filespace, &
 mem_space_id = memspace, &
 xfer_prp = plist_id)

www.hdfgroup.org 65

Writing and Reading Hyperslabs

•  Distributed memory model: data is split among
processes

•  PHDF5 uses HDF5 hyperslab model
•  Each process defines memory and file

hyperslabs
•  Each process executes partial write/read call

•  Collective calls
•  Independent calls

www.hdfgroup.org

HDF5 Properties

•  Properties (also known as Property Lists)
are characteristics of HDF5 objects that can
be modified

•  Default properties handle most needs

•  By changing properties one can take
advantage of the more powerful features in
HDF5

66

www.hdfgroup.org

Storage Properties

67

Better access time
for subsets;
extensible

Improves storage
efficiency,
transmission speed

Data elements
stored physically
adjacent to each
other

www.hdfgroup.org

HDF5 Attributes (optional)

•  An HDF5 attribute has a name and a value
•  Attributes typically contain user metadata

•  Attributes may be associated with
- HDF5 groups

- HDF5 datasets

- HDF5 named datatypes

•  An attribute’s value is described by a datatype and a
dataspace

•  Attributes are analogous to datasets except…
 - they are NOT extensible

 - they do NOT support compression or partial I/O
68

www.hdfgroup.org

Dataset Creation Property List

69

Better access time
for subsets;
extensible

Improves storage
efficiency,
transmission speed

H5P_DEFAULT: contiguous

Dataset creation property list: information on how to
organize data in storage.

www.hdfgroup.org

Steps to Create a Group

1.  Decide where to put it – “root group”
•  Obtain location ID

2.  Define properties or use H5P_DEFAULT

5.  Create group in file.

4. Close the group.

70

www.hdfgroup.org

Example: Create a Group

A B
“/” (root)

4x6 array of
integers

file.h5

71

www.hdfgroup.org

Code: Create a Group

hid_t file_id, group_id;
...
/* Open “file.h5” */
file_id = H5Fopen (“file.h5”, H5F_ACC_RDWR,

 H5P_DEFAULT);

/* Create group "/B" in file. */
group_id = H5Gcreate (file_id,"B", H5P_DEFAULT,

 H5P_DEFAULT, H5P_DEFAULT);

/* Close group and file. */
status = H5Gclose (group_id);
status = H5Fclose (file_id);

72

www.hdfgroup.org

The HDF Group

73

Intermediate Parallel HDF5

www.hdfgroup.org 74

Outline

•  Performance
•  Parallel tools

www.hdfgroup.org 75

My PHDF5 Application I/O is slow

•  If my application I/O performance is slow, what
can I do?
•  Use larger I/O data sizes
•  Independent vs. Collective I/O
•  Specific I/O system hints
•  Increase Parallel File System capacity

www.hdfgroup.org 76

Write Speed vs. Block Size

TFLOPS: HDF5 Write vs MPIO Write
(File size 3200MB, Nodes: 8)

0
20
40
60
80

100
120

1 2 4 8 16 32
Block Size (MB)

M
B

/S
ec HDF5 Write

MPIO Write

www.hdfgroup.org 77

Independent Vs Collective Access

•  User reported
Independent data
transfer mode was much
slower than the
Collective data transfer
mode

•  Data array was tall and
thin: 230,000 rows by 6
columns

:
:
:

230,000 rows
:
:
:

www.hdfgroup.org 78

of Rows Data Size
(MB)

Independent
(Sec.)

Collective
(Sec.)

16384 0.25 8.26 1.72

32768 0.50 65.12 1.80

65536 1.00 108.20 2.68

122918 1.88 276.57 3.11

150000 2.29 528.15 3.63

180300 2.75 881.39 4.12

Independent vs. Collective write

6 processes, IBM p-690, AIX, GPFS

www.hdfgroup.org 79

Independent vs. Collective write (cont.)

Performance (non-contiguous)

0

100

200

300

400

500

600

700

800

900

1000

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Data space size (MB)

Ti
m

e
(s

)

Independent

Collective

www.hdfgroup.org 80

Effects of I/O Hints: IBM_largeblock_io

•  GPFS at LLNL Blue
•  4 nodes, 16 tasks
•  Total data size 1024MB
•  I/O buffer size 1MB

IBM_largeblock_io=false IBM_largeblock_io=true
Tasks MPI-IO PHDF5 MPI-IO PHDF5
16 write (MB/S) 60 48 354 294
16 read (MB/S) 44 39 256 248

www.hdfgroup.org 81

•  GPFS at LLNL ASCI Blue machine
•  4 nodes, 16 tasks
•  Total data size 1024MB
•  I/O buffer size 1MB

0
50

100
150
200
250
300
350
400

MPI-IO PHDF5 MPI-IO PHDF5

IBM_largeblock_io=false IBM_largeblock_io=true

16 write
16 read

Effects of I/O Hints: IBM_largeblock_io

www.hdfgroup.org 82

Parallel Tools

•  ph5diff
•  Parallel version of the h5diff tool

•  h5perf
•  Performance measuring tools showing I/

O performance for different I/O API

www.hdfgroup.org 83

ph5diff

•  An parallel version of the h5diff tool
•  Supports all features of h5diff
•  An MPI parallel tool
•  Manager process (proc 0)

•  coordinates each the remaining processes
(workers) to “diff” one dataset at a time;

•  collects any output from each worker and
prints them out.

•  Works best if there are many datasets in the
files with few differences.

•  Available in v1.8.

www.hdfgroup.org 84

h5perf

•  An I/O performance measurement tool
•  Test 3 File I/O API

•  POSIX I/O (open/write/read/close…)
•  MPIO (MPI_File_{open,write,read,close})
•  PHDF5

• H5Pset_fapl_mpio (using MPI-IO)
• H5Pset_fapl_mpiposix (using POSIX I/O)

www.hdfgroup.org 85

h5perf: Some features

•  Check (-c) verify data correctness
•  Added 2-D chunk patterns in v1.8
•  -h shows the help page.

www.hdfgroup.org 86

h5perf: example output 1/3
% mpirun -np 4 h5perf
Number of processors = 4
 Transfer Buffer Size: 131072 bytes, File size: 1.00 MBs
 # of files: 1, # of datasets: 1, dataset size: 1.00 MBs
 IO API = POSIX
 Write (1 iteration(s)):
 Maximum Throughput: 18.75 MB/s
 Average Throughput: 18.75 MB/s
 Minimum Throughput: 18.75 MB/s
 Write Open-Close (1 iteration(s)):
 Maximum Throughput: 10.79 MB/s
 Average Throughput: 10.79 MB/s
 Minimum Throughput: 10.79 MB/s
 Read (1 iteration(s)):
 Maximum Throughput: 2241.74 MB/s
 Average Throughput: 2241.74 MB/s
 Minimum Throughput: 2241.74 MB/s
 Read Open-Close (1 iteration(s)):
 Maximum Throughput: 756.41 MB/s
 Average Throughput: 756.41 MB/s
 Minimum Throughput: 756.41 MB/s

www.hdfgroup.org 87

h5perf: example output 2/3

% mpirun -np 4 h5perf
…
 IO API = MPIO
 Write (1 iteration(s)):
 Maximum Throughput: 611.95 MB/s
 Average Throughput: 611.95 MB/s
 Minimum Throughput: 611.95 MB/s
 Write Open-Close (1 iteration(s)):
 Maximum Throughput: 16.89 MB/s
 Average Throughput: 16.89 MB/s
 Minimum Throughput: 16.89 MB/s
 Read (1 iteration(s)):
 Maximum Throughput: 421.75 MB/s
 Average Throughput: 421.75 MB/s
 Minimum Throughput: 421.75 MB/s
 Read Open-Close (1 iteration(s)):
 Maximum Throughput: 109.22 MB/s
 Average Throughput: 109.22 MB/s
 Minimum Throughput: 109.22 MB/s

www.hdfgroup.org 88

h5perf: example output 3/3
% mpirun -np 4 h5perf
…
 IO API = PHDF5 (w/MPI-I/O driver)
 Write (1 iteration(s)):
 Maximum Throughput: 304.40 MB/s
 Average Throughput: 304.40 MB/s
 Minimum Throughput: 304.40 MB/s
 Write Open-Close (1 iteration(s)):
 Maximum Throughput: 15.14 MB/s
 Average Throughput: 15.14 MB/s
 Minimum Throughput: 15.14 MB/s
 Read (1 iteration(s)):
 Maximum Throughput: 1718.27 MB/s
 Average Throughput: 1718.27 MB/s
 Minimum Throughput: 1718.27 MB/s
 Read Open-Close (1 iteration(s)):
 Maximum Throughput: 78.06 MB/s
 Average Throughput: 78.06 MB/s
 Minimum Throughput: 78.06 MB/s
 Transfer Buffer Size: 262144 bytes, File size: 1.00 MBs
 # of files: 1, # of datasets: 1, dataset size: 1.00 MBs

www.hdfgroup.org 89

Useful Parallel HDF Links

•  Parallel HDF information site
http://www.hdfgroup.org/HDF5/PHDF5/

•  Parallel HDF5 tutorial available at
http://www.hdfgroup.org/HDF5/Tutor/

•  HDF Help email address
help@hdfgroup.org

www.hdfgroup.org

The HDF Group

90

Questions?

End of Part IV

www.hdfgroup.org

HDF5 Groups

“/”
A B

C

k l
temp

•  Used to organize collections
•  Every file starts with a root group
•  Similar to UNIX directories
•  Path to object defines it
•  Objects can be shared:
 /A/k and /B/l are the same

= Group

= Dataset

91

temp

www.hdfgroup.org

HDF5 Dataset with Compound Datatype

int8 int4 int16
Compound
Datatype:

Dataspace: Rank = 2 
 Dimensions = 5 x 3

3

5

V V V V V V
V V V

92

www.hdfgroup.org

Link Creation/Dataset Access Properties

•  Link Creation:
•  Creating intermediate groups

•  Dataset Access:
•  Retrieve the raw data chunk cache parameters

93

www.hdfgroup.org

Group Properties

•  Link Creation
•  Creating intermediate groups

•  Group Creation
•  Creation order tracking and indexing for links in

a group.
•  Set Number of links and length of link names in

a group.

•  Group Access (not used)

94

www.hdfgroup.org

Compile option: -show

-show: displays the compiler commands and options
 without executing them

% h5cc –show Sample_c.c

Will show the correct paths and libraries used by
the installed HDF5 library.

Will show the correct flags to specify when
building an application with that HDF5 library.

95

www.hdfgroup.org

The HDF Group

96

Other General HDF5 Slides

www.hdfgroup.org

Help

The HDF Group Page: http://hdfgroup.org/
HDF5 Home Page: http://hdfgroup.org/HDF5/

HDF Helpdesk: help@hdfgroup.org
HDF Mailing Lists: http://hdfgroup.org/services/support.html

97 ASTROSIM Summer School

www.hdfgroup.org

HDF5 is designed …

•  for high volume and/or complex data

•  for every size and type of system (portable)

•  for flexible, efficient storage and I/O

•  to enable applications to evolve in their use of
HDF5 and to accommodate new models

•  to support long-term data preservation

98

www.hdfgroup.org

HDF5 Home Page

HDF5 home page: http://hdfgroup.org/HDF5/
•  Two releases: HDF5 1.8 and HDF5 1.6

HDF5 source code:
•  Written in C, and includes optional C++, Fortran 90 APIs,

and High Level APIs
•  Contains command-line utilities (h5dump, h5repack,

h5diff, ..) and compile scripts
HDF pre-built binaries:

•  When possible, include C, C++, F90, and High Level
libraries. Check ./lib/libhdf5.settings file.

•  Built with and require the SZIP and ZLIB external libraries

99

www.hdfgroup.org

HDF5 Technology

•  HDF5 (Abstract) Data Model
•  Defines the “building blocks” for data organization and

specification
•  Files, Groups, Datasets, Attributes, Datatypes, Dataspaces, …

•  HDF5 Library (C, Fortran 90, C++ APIs)
•  Also Java Language Interface and High Level Libraries

•  HDF5 Binary File Format
•  Bit-level organization of HDF5 file
•  Defined by HDF5 File Format Specification

•  Tools For Accessing Data in HDF5 Format
•  h5dump, h5repack, HDFView, …

100

www.hdfgroup.org

HDF5 File

lat | lon | temp 
‐‐‐‐|‐‐‐‐‐|‐‐‐‐‐ 
 12 |  23 |  3.1 
 15 |  24 |  4.2 
 17 |  21 |  3.6 An HDF5 file is a

container that
holds data
objects.

101

www.hdfgroup.org

HDF5 Datasets

 HDF5 Datasets organize and contain your
“raw data values”. They consist of:
•  Your raw data
•  Metadata describing the data:

- The information to interpret the data (Datatype)
- The information to describe the logical layout of the

data elements (Dataspace)
- Characteristics of the data (Properties)
- Additional optional information that describes the

data (Attributes)

102

www.hdfgroup.org

HDF5 Abstract Data Model Summary

•  The Objects in the Data Model are the “building
blocks” for data organization and specification

•  Files, Groups, Links, Datasets, Datatypes,
Dataspaces, Attributes, …

•  Projects using HDF5 “map” their data concepts to
these HDF5 Objects

103

www.hdfgroup.org

HDF5 Software Layers & Storage

HDF5 File
Format File Split

Files

File on
Parallel
Filesystem

Other

I/O Drivers

Virtual File
Layer Posix

I/O
Split
Files MPI I/O Custom

Internals Memory
Mgmt

Datatype
Conversion Filters Chunked

Storage
Version

Compatibility
and so
on…

Language
Interfaces

C, Fortran, C++

HDF5 Data Model
Objects

Groups, Datasets, Attributes, …
Tunable Properties

Chunk Size, I/O Driver, …

H
D

F5
 L

ib
ra

ry

S
to

ra
ge

 h5dump
tool

High Level
APIs

HDFview
 tool To

ol
s

 h5repack
 tool

Java Interface
…

API

104

www.hdfgroup.org

Useful Tools For New Users

h5dump:
 Tool to “dump” or display contents of HDF5 files

h5pcc,, h5pfc:
 Scripts to compile applications

HDFView:
 Java browser to view HDF4 and HDF5 files
 http://www.hdfgroup.org/hdf-java-html/hdfview/

105

www.hdfgroup.org

HDF5 is like…

5

106

www.hdfgroup.org

h5dump Utility

 h5dump [options] [file]

 -H, --header Display header only – no data
 -d <names> Display the specified dataset(s).
 -g <names> Display the specified group(s) and

 all members.
 -p Display properties.

 <names> is one or more appropriate object names.

107

www.hdfgroup.org

Example of h5dump Output

HDF5 "dset.h5" {
GROUP "/" {
 DATASET "dset" {
 DATATYPE { H5T_STD_I32BE }
 DATASPACE { SIMPLE (4, 6) / (4, 6) }
 DATA {
 1, 2, 3, 4, 5, 6,
 7, 8, 9, 10, 11, 12,
 13, 14, 15, 16, 17, 18,
 19, 20, 21, 22, 23, 24
 }
 }
}
}

“/”
‘dset’

108

www.hdfgroup.org

Pre-defined Native Datatypes

Examples of predefined native types in C:

H5T_NATIVE_INT (int)
H5T_NATIVE_FLOAT (float)
H5T_NATIVE_UINT (unsigned int)
H5T_NATIVE_LONG (long)
H5T_NATIVE_CHAR (char)

NOTE: Memory types.
 Different for each machine.
 Used for reading/writing.

109

www.hdfgroup.org

Other Common Functions

DataSpaces: H5Sselect_hyperslab
 H5Sselect_elements
 H5Dget_space

Groups: H5Gcreate, H5Gopen, H5Gclose

Attributes: H5Acreate, H5Aopen_name,
 H5Aclose, H5Aread, H5Awrite

Property lists: H5Pcreate, H5Pclose
 H5Pset_chunk, H5Pset_deflate

110

www.hdfgroup.org

HDF5 is the second HDF format
• Development started in 1996
•  First release was in 1998

HDF4 is the first HDF format
• Originally called HDF
• Development started in 1987
•  Still supported by The HDF Group

HDF = Hierarchical Data Format

111

www.hdfgroup.org

HDF5 Dataspaces

Two roles:
Dataspace contains spatial information (logical

layout) about a dataset
 stored in a file

• Rank and dimensions
•  Permanent part of dataset

definition

Subsets: Dataspace describes application’s data
buffer and data elements participating in I/O

112

