
Adrian Tate

Principal Engineer

Cray Inc.

NERSC User Group 2012

 Building blocks for writing scientific applications

 Historically – allowed the first forms of code re-use

 Later – became ways of running optimized code

 These days the complexity of the hardware is very high

 Cray PE insulates the user from that complexity

 Cray module environment

 CCE

 Performance tools

 Tuned MPI libraries (+PGAS)

 Optimized Scientific libraries

 Cray scientific libraries are designed to give maximum possible
performance from Cray systems with minimum effort

1. Network performance

 Optimize for network performance

 Overlap between communication and computation

 Use the best available low-level mechanism

 Use adaptive parallel algorithms

2. Node performance

 Highly tune BLAS etc at the low-level

3. Highly adaptive software

 Using auto-tuning and adpatation, give the user the known
best (or very good) codes at runtime

4. Productivity features

 Simpler interfaces into complex software

FFT

FFTW

CRAFFT

Sparse

Trilinos

PETSc

CASK

Dense

BLAS

LAPACK

ScaLAPACK

IRT

FFTW

fftw-2.1.5

fftw

PETSc

petsc-

Petsc-
complex

CASK
(petsc)

Trilinos

Trilinos
10.8.3.0

CASK
(trilinos)

LibSci

BLAS

LAPACK

ScaLAPACK

IRT

CRAFFT

 There are many libsci libraries on the systems

 One for each of
 Compiler (intel, cray, gnu, pgi)

 Single thread, multiple thread

 Target (istanbul, mc12, interlagos)

 Static and shared

 Naming schemes
 Before libsci 11.0 : libsci_target.a

 After libsci 11.0 : libsci_compiler.a

 Best way to use libsci is to ignore all of this

 Load the xtpe-module
 module load xtpe-mc12

 “ftn” and “cc” are the magic tools that will help
 Link appropriate libraries for your environment

 Add all the library paths and that you need

 module command (module --help)

 PrgEnv modules :

 Component modules

 Cray driver scripts ftn, cc, CC

TUNER/STUNER> module avail PrgEnv

PrgEnv-cray/3.1.35 PrgEnv-gnu/4.0.12A PrgEnv-pathscale/3.1.37G
PrgEnv-cray/3.1.37AA PrgEnv-gnu/4.0.26A PrgEnv-pathscale/3.1.49A
PrgEnv-cray/3.1.37C PrgEnv-gnu/4.0.36(default) PrgEnv-pathscale/3.1.61
PrgEnv-cray/3.1.37E PrgEnv-intel/3.1.35 PrgEnv-pathscale/4.0.12A
PrgEnv-cray/3.1.37G PrgEnv-intel/3.1.37AA PrgEnv-pathscale/4.0.26A
PrgEnv-cray/3.1.49A PrgEnv-intel/3.1.37C PrgEnv-pathscale/4.0.36(default)
PrgEnv-cray/3.1.61 PrgEnv-intel/3.1.37E PrgEnv-pgi/3.1.35
PrgEnv-cray/4.0.12A PrgEnv-intel/3.1.37G PrgEnv-pgi/3.1.37AA
PrgEnv-cray/4.0.26A PrgEnv-intel/3.1.49A PrgEnv-pgi/3.1.37C
PrgEnv-cray/4.0.36(default) PrgEnv-intel/3.1.61 PrgEnv-pgi/3.1.37E
PrgEnv-gnu/3.1.35 PrgEnv-intel/4.0.12A PrgEnv-pgi/3.1.37G
PrgEnv-gnu/3.1.37AA PrgEnv-intel/4.0.26A PrgEnv-pgi/3.1.49A
PrgEnv-gnu/3.1.37C PrgEnv-intel/4.0.36(default) PrgEnv-pgi/3.1.61
PrgEnv-gnu/3.1.37E PrgEnv-pathscale/3.1.35 PrgEnv-pgi/4.0.12A
PrgEnv-gnu/3.1.37G PrgEnv-pathscale/3.1.37AA PrgEnv-pgi/4.0.26A
PrgEnv-gnu/3.1.49A PrgEnv-pathscale/3.1.37C PrgEnv-pgi/4.0.36(default)
PrgEnv-gnu/3.1.61 PrgEnv-pathscale/3.1.37E

--- /opt/cray/modulefiles ---

xt-libsci/10.5.02 xt-libsci/11.0.04 xt-libsci/11.0.05.1
xt-libsci/11.0.03 xt-libsci/11.0.04.8 xt-libsci/11.0.05.2(default)

 Perhaps you want to link another library such as ACML

 This can be done. If the library is provided by Cray, then load
the module. The link will be performed with the libraries in the
correct order.

 If the library is not provided by Cray and has no module, add it
to the link line.

 Items you add to the explicit link will be in the correct place

 To get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve
from ACML

 BLAS calls from the scalapack code will be resolved from
libsci (no way around this with static libraries)

 I recommend adding options to the linker to make sure you
have the correct library loaded.

 -Wl adds a command to the linker from the driver

 You can ask for the linker to tell you where an object was
resolved from using the –y option.

 E.g. –Wl, -ydgemm_

Note : explicitly linking “-lsci” is bad! This won’t be found
from libsci 11+ (and means single core library for 10.x!)

.//main.o: reference to dgemm_

/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):

definition of dgemm_

 Libsci includes standard BLAS1, 2, 3

 Most BLAS in libsci are highly tuned and threaded

 The emphasis is on the routines that are most important to
users – feedback always welcome

 There are single and multi-threaded libraries on the system

 The multi-thread library is linked by default

 The single-thread library is there for specialist use and
debugging – no real reason to try it

 Usage – just as standard BLAS

 LibSci is (now) compatible with OpenMP

 Control the number of threads to be used in your program
using OMP_NUM_THREADS

e.g. in job script

 setenv OMP_NUM_THREADS 16

 Then run with aprun –n1 –d16

 What behavior you get from the library depends on your code

1. No threading in code
 The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel region
 The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel region
 The BLAS call will use a single thread

0

5

10

15

20

25
1

0
0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

G
FL

O
P

S

Matrix dimensions M=N=K

2threads

1 thread

0

100

200

300

400

500

600

700
1

0
0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

G
FL

O
P

S

Matrix dimensions M=N=K

24 threads

20 threads

16 threads

12 threads

8threads

4threads

2threads

1 thread

14

0

20

40

60

80

100

120

140

1 2 4 8 12 16 20 24

G
FL

O
P

S

Number of threads

Libsci-10.5.2 performance on 2 x MC12 2.0 GHz
(Cray XE6)

K=64

K=128

K=200

K=228

K=256

K=300

K=400

K=500

K=600

K=700

K=800

0

1

2

3

4

5

6

7

8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

G
FL

O
P

S/
th

re
ad

Matrix dimension M=N=K

1thread

2threads

4threads

8threads

12threads

16threads

20threads

24 threads

 For ZGEMM only

 Complex matrix multiplication can be performed using real
matrix additions, for fewer flops

 You can turn on the 3M algorithm

 Set the environment variable

 ZGEMM_USE_3M=1

 Note : there is an accuracy trade-off, though this should be
safe most of the time

 We are preparing the release of an entirely new BLAS library

 This has been built in a completely different way

 using our autotunign framework

 By building an entirely adaptive interface into BLAS calls

 Using a new generalized formulation of BLAS

 The generalized BLAS code allows much greater performance
variation

 Explore all loop orderings

 Explore all threading options

 Explore all buffer combinations

 Change all block sizes and number of block levels.

 The idea is that you will receive the best of many many BLAS
kernel versions for your specific problem at runtime

 What this will give you

 Extremely good performance for

 Unusual problem sizes/shapes

 Better performance within solvers (who also have unusual)

 Much richer openMP support

 Multi-levels of parallelism

 User selects the inner-most thread number, or

 openMP run-time can decide how much to use

 BIT –reproducible threaded GEMM

M N K LibSci-

10.5.2
CrayBLAS

%improve

8 8 8 0.04 0.18 352.34%

80 80 80 3.81 5.50 44.26%

80 800 80 4.87 6.67 36.99%

8 8000 8 2.25 2.35 4.54%

800 800 80 5.88 6.61 12.28%

200 200 200 5.69 6.69 17.73%

200 2000 200 6.16 7.28 18.07%

1000 1000 256 6.89 7.27 5.54%

1000 200 200 6.60 6.83 3.54%

 Threaded LAPACK works exactly the same as threaded BLAS

 Anywhere LAPACK uses BLAS, those BLAS can be threaded

 Some LAPACK routines are threaded at the higher level

 No special instructions

0

10

20

30

40

50

60

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900

G
FL

O
P

S/
s

Matrix dimension

1thread

2threads

4threads

8threads

16threads

24 threads

 Mixed precision can yield a big win on x86 machines.

 SSE (and AVX) units issue double the number of single precision operations
per cycle.

 On CPU, single precision is always 2x as fast as double

 Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x)

 Newer AMD cards (> 2x)

 IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the covers

22

 Various tools for solves linear systems in mixed precision

 Obtaining solutions accurate to double precision
 For well conditioned problems

 Serial and Parallel versions of LU, Cholesky, and QR

 2 usage methods
 IRT Benchmark routines

 Uses IRT 'under-the-covers' without changing your code
 Simply set an environment variable
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

23

Decide if you want to use advanced API or benchmark API

 benchmark API :
 setenv IRT_USE_SOLVERS 1

 advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

24

0

2

4

6

8

10

12

14

16

18

20

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900

G
LF

O
P

S/
s

matrix dimension

IRT_USE_SOLVERS=1

normal

 Cray’s main FFT library is FFTW from MIT

 We work with the FFT developers to make sure that this is
optimized for Cray hardware

 We wrote the bulldozer version of FFTW for MIT

 Usage is simple

 Load the module

 In the code, call an FFTW plan

 Cray’s FFTW provides wisdom files for these systems

 You can use the wisdom files to skip the plan stage

 This can be a significant performance boost

 CRAFFT can be used for advanced controls of FFTW and better
parallel performance

 Serial CRAFFT is largely a productivity enhancer

 Also a performance boost due to “wisdom” usage

 Some FFT developers have problems such as
 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

 Standard FFT practice
 Do a plan stage

 Do an execute

 CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one

function call
 Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

27

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

 In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

 in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

 out-of-place, explicit memory management :

crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

28

 Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALL instead of ALLTOALLV where possible

 Overlaps the local transpose with the parallel communications

 Uses a more adaptive communication scheme based on input

 Lots of more advanced research in one-sided messaging and
active messages

 Can provide impressive performance improvements over FFTW2

 Currently implemented

 complex-complex

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

 C language support for serial and parallel

 Generic interfaces for C users (use C++ compiler to get these)
29

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

 2-d complex-complex, in-place, internal mem management :

 call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

 2-d complex-complex, in-place with no internal memory :

 call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

 2-d complex-complex, out-of-place, internal mem manager :

 call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

 2-d complex-complex, out-of-place, no internal memory :

 crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :

 man crafft_pz2z3d
30

CRAFFT, plan=0
(=FFTW_ESTIMATE)

CRAFFT plan = 1
(=FFTW_MEASURE)

2d mpi fft, normal,
n=12288

FFTW out-place

r2c, Gflops 5.36 5.92 4.8 4.7

c2r, Gflops 4.14 5.02 4.8 5.14

 Sparse matrix operations in PETSc and Trilinos on Cray systems
are optimized via CASK

 CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

 Uses ATF auto-tuning, specialization and Adaptation concepts

 Offline :

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

 Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution
32

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

Sp
e

e
d

-u
p

CASK + PETSc XT5 single node (60 matrices)

34

0

500

1000

1500

2000

M
Fl

o
p

s

Matrix Name

Trilinos + CASK on Instanbul, single node

 Tuned library for hybrid nodes of NVIDIA GPUs + AMD IL

 Simple interface

 Use the standard API for BLAS, LAPACK etc

 Libsci_acc does it all under the covers
 Manages and pins the host memory

 Allocates GPU resources

 Copies data to the GPU

 Performs the operation on GPU and on CPU

 Copies data back to the GPU

 Provides the following

 [s,d,z,c]GEMM

 [s,d,z,c]GETRF

 [s,d,z,c]POTRF

 March release

 LAPACK 3.4.0

 C interfaces for lapack

 CRAFFT CAF optimizations

 April release

 CrayBLAS1.0

 April release of libsci_acc

 Fully adaptive BLAS (GEMM)

 POTRF, DGESDD

