
Multicore Programming
Preparing for Hopper
 Alice Koniges, Berkeley Lab/NERSC

With input from:

John Shalf, Berkeley Lab/NERSC

Rusty Lusk, Argonne National Laboratory (ANL)

Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

Gabriele Jost, Texas Advanced Computing Center

Despite continued “packing” of
transistors, performance is flatlining

•  New Constraints
–  15 years of exponential clock rate

growth has ended

•  But Moore’s Law continues!
–  How do we use all of those

transistors to keep performance
increasing at historical rates?

–  Industry Response: #cores per chip
doubles every 18 months instead of
clock frequency!

Figure courtesy of Kunle Olukotun,
Lance Hammond, Herb Sutter, and
Burton Smith

Computer Centers and Vendors are
Responding with New Designs

•  Virtually all upcoming systems have various forms of
heterogeneous parallelism
•  NERSC6 with its multicore design TBA
•  Blue Waters with its Power7 hardware threaded design
8 cores, 12 execution units/core, 4-way SMT/core
•  ASC Sequoia (follow-on to BlueGene design) with anticipated

support for transactional memory
•  Experts everywhere are preparing for this architecture revolution

with new languages, extensions to old languages, tools (and angst)
•  Our goal at NERSC is to make this as painless as possible for

application scientists
•  We invite you to comment on our plans

NUG 2009 4

What’s Wrong with MPI Everywhere

• We can run 1 MPI process per core (flat model for parallelism)
–  This works now and will work for a while
–  But this is wasteful of intra-chip latency and bandwidth (100x lower

latency and 100x higher bandwidth on chip than off-chip)
–  Model has diverged from reality (the machine is NOT flat)

• How long will it continue working?
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
–  Depends on performance expectations

• What is the problem?
–  Latency: some copying required by semantics
–  Memory utilization: partitioning data for separate address space requires

some replication
 How big is your per core subgrid? At 10x10x10, over 1/2 of the points are

surface points, probably replicated
–  Memory bandwidth: extra state means extra bandwidth
–  Weak scaling: success model for the “cluster era;” will not be for the many

core era -- not enough memory per core
–  Heterogeneity: MPI per CUDA thread-block?

NUG 2009 5

Within the MPI-OpenMP hybrid model, there are
variants depending on system and application

Which programming
model is fastest?

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

1) MPI everywhere

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI everywhere?

Fully hybrid
MPI & OpenMP?

In - between?
(Mixed model)

? Historically hybrid
programming can be
slower than pure
MPI

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

NUG 2009 6

Current Multicore SMP Systems can have different
memory access and cache use patterns

667MHz FBDIMMs

Chipset (4x64b controllers)

10.6 GB/s(write) 21.3 GB/s(read)

10.6 GB/s

Core2

Front Side Bus

Core2 Core2 Core2

10.6 GB/s

Core2

FSB

Core2 Core2 Core2

4MB
Shared L2

4MB
Shared L2

4MB
Shared L2

4MB
Shared L2

AMD Opteron Intel Clovertown

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b memory controller

H
T 1MB

victim
1MB
victim

SRI / crossbar

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b memory controller

H
T 1MB

victim
1MB

victim

SRI / crossbar

4G
B

/s

(e
ac

h
di

re
ct

io
n)

Uniform Memory Access Non-uniform Memory Access
Thus a flat memory model like standard OpenMP may not be sufficient for the core programming model

NUG 2009 7

Programming Models are Changing to
Accommodate the Multicore Revolution

•  A programming model is an abstraction that we program by
writing instructions

•  Multiple classes of models differ in how we think about
communication and synchronization among processes

–  Shared memory
–  Distributed memory
–  Some of each

•  Shared Memory (really globally addressable)
–  Processes (or threads) communicate through memory addresses

accessible to each
•  Distributed memory

–  Processes move data from one address space to another via
sending and receiving messages

•  Multiple cores per node make the shared-memory model efficient
and inexpensive

NUG 2009 8

Back to basics: writing parallel programs
can be expressed in different ways

•  Parallel programming models are expressed:
–  In libraries callable from conventional languages
–  In languages compiled by their own special compilers
–  In structured comments that modify the behavior of a

conventional compiler
–  New ideas or “natural ways” to parallel program

Need to think beyond the MPI – everywhere model
using a callable library

NUG 2009 9

MPI and Threads

•  MPI describes parallelism between processes (with
separate address spaces)

•  Thread parallelism provides a shared-memory model
within a process

•  OpenMP and Pthreads are common but different models
–  OpenMP provides convenient features for loop-level

parallelism
–  Pthreads provide more complex and dynamic approaches
–  OpenMP 3.0 (which adds task parallelism) adds some of

these capabilities to OpenMP
•  MPI combined with OpenMP is the most common current

means of adapting for heterogenous architecures
–  Doesn’t always work
–  Is not able to deal with NUMA on the nodes

NUG 2009 10

The PGAS Languages

•  PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with
awareness of data locality, for performance

–  Co-Array Fortran, an extension to Fortran-90)
  SPMD – Single program, multiple data
  Replicated to a number of images
  Variables declared as co-arrays are accessible by another image through a

set of array subscripts, delimited by [] and mapped to image indices by the
usual rule

–  UPC (Unified Parallel C), an extension to C
  UPC is an extension of C (not C++) with shared and local addresses
  Shared keyword in type declarations
  What we have been calling processes are called threads in UPC

–  and may be implemented as OS threads
–  Titanium, a parallel version of Java

  Titanium is a PGAS language based on Java
  The langauge is compiled, not interpreted

–  Implementations do not use the JVM

NUG 2009 11

New Models MPI + x or ?

•  We are considering new programming models that combine MPI
with another language such as UPC or CAF in addition to the
standard hybrid method of MPI+OpenMP

•  There are also a large number of new languages to consider:
–  Intels’s CnC or Concurrent Collections

  Invites users to rethink their problem into 2 pieces:
–  Data dependence and control dependence

–  Microsoft’s parallel language suites including:
  Axum
  Parallel Patterns Library

–  OpenCL
  A framework for writing parallel programs that execute

heterogeneous platforms
•  Also, most current languages (OpenMP, MPI, etc) are looking at

what changes should be made for architecture evolution

NUG 2009 12

Path Forward

NUG 2009 13

NERSC is a new Cray Center of Excellence

•  Joint with Cray we each have dedicated 2FTE’s over the next two
years to examine programming models and prepare training
materials

•  Plan is to start with the NERSC benchmark series, particularly
those which are already hybrid, and characterize their performance
and effectiveness

•  Then we will move on to other benchmarks and consider how to
add other models, the MPI + x model

•  Along the way, we will develop and improve tools for hybrid
analysis

•  By the end of 2010, we will have course material prepared based on
these experiences

NUG 2009 14

The Parallel Motifs Program

•  NERSC is teaming with members of the Berkeley Lab, Berkeley
Campus, Microsoft, and Intel to quantify smaller units of code that
represent the majority of scientific computations

•  We are writing these codes in different languages for people do
download and examine

•  We are starting a website parallelmotifs.org, which will eventually
house the motif codes for analysis and experimentation

NUG 2009 15

The Computational Science and
Engineering Petascale Initiative

•  NERSC received 3.125M$ in stimulus money for this initiative
•  This money is being used to fund 8 post-docs who will work

closely with application codes to enhance performance and
consider new models

•  Although the money is tied to helping certain project areas, the
benefit to general NERSC will be evident through knowledge
gained and teaching materials that result from this research

•  The post-docs will spend half of their time at the NERSC facility, to
directly interact with NERSC staff to ensure there is
communication of new ideas and “what works”

NUG 2009 16

Courses and Presentations

•  NERSC is giving presentations to help users at major conferences,
for example:

–  “Application Supercomputing and the Many-Core Paradigm Shift,”
full day tutorial at SC09 organized by NERSC, yet includes expert
speakers from other laboratories

•  We have organized dedicated sessions at the SIAM Conference on
Scientific Computing, Seattle, Feb. 10 – 14 2010

–  These invited talks will feature keynote speakers on the PGAS
languages, hybrid programming, Microsoft parallel languages, Intel
parallel languages, and the parallel motifs project

•  Summer Tutorials at ParCFD, SciDAC
•  Participated in ParLab Boot Camp with all lectures now online
•  We invite you to suggest other forums and venues for such

presentations

NUG 2009 17

Collaboration with other sites for tools,
languages, and courses

•  Some of our current collaborations include:
–  Lawrence Livermore National Laboratory

  compiler tools that allow for optimization (ROSE) and tools for
analysis

  Specific OpenMP analyzers and other correctness tools
–  High Performance Computing Center Stuttgart

  collaboration on teaching materials and sample codes for hybrid
programming, UPC, CAF and other topics

–  Texas Advanced Computer Center
  collaboration on designing and testing OpenMP and hybrid

codes and models
–  Argonne National Laboratory

  collaboration on teaching materials and hybrid analysis tools
–  Microsoft and Intel, on languages, tools, and motifs

NUG 2009 18

Talking Points and Questions

•  The multi-core revolution – what is your opinion?
•  How interested are application developers in changing their codes

to get performance?
•  What other plans should we be making?
•  INPUT and QUESTIONS ??

