
Parallel I/O

Katie Antypas
NUG Meeting

Boulder CO, October 8th 2009

Thanks to Rob Ross and Rob Latham at
ANL for use of some slides

Outline

•  Review of parallel file systems
•  Application Parallel I/O strategies

–  MPI-IO
–  Parallel I/O libraries

•  Lustre Optimizations
•  Preview of Hopper I/O
•  Best practices and recommendations

1

Getting bigger all the time
•  User I/O needs

growing each year in
scientific community

•  For our largest users
I/O parallelism is
mandatory

•  I/O remains a
bottleneck for many
users

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Disk Access Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

3 Slide from Rob Ross, Rob Latham at ANL

What is a File System?

•  A file system is a method for storing, organizing,
manipulating, navigating, accessing and retrieving
data files
–  This is a layer that mediates transactions between

the Operating System and the Storage Device.
•  A file system deals with “data” and “metadata” (data

about data)
•  We often refer to a “file system name” as the root of

a hierarchical directory tree, e.g. “the /home file
system.”
–  We can treat this as “one big disk,” but it may

actually be a complex collection of disk arrays, IO
servers, and networks.

Terminology: Metadata

•  Data about data
•  File systems store information about files

externally to those files.
•  Linux uses an inode, which stores

information about files and directories (size
in bytes, device id, user id, group id, mode, timestamps,
link info, pointers to disk blocks, file size…)

•  Any time a file’s attributes change or info
is desired (e.g., ls –l) metadata has to be
retrieved from the metadata server

•  Metadata operations are IO operations
which require time and disk space.

Generic Parallel File System
Architecture

Compute
Nodes

Internal
Network

Storage
Hardware --
Disks

Disk controllers -
manage failover

I/O Servers

External
Network -
(Likely FC)

MDS I/O I/O I/O I/O I/O I/O I/O

Franklin Luster Configuration in /scratch

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O
ST

O

ST

O
ST

O
ST

O

ST

O
ST

O

ST

O
ST

 24 OSS
48 OSTs

Franklin Compute and Interactive Nodes

“The Torus”

6 DDN
48 LUN

FC Network

…

Connectivity and configuration set in a “good” way for
parallelism. Using 24 OSTs will spread evenly over the DDN
appliances.

…

Peak I/O system
bandwidth is �
~17 Gbyte/sec.

Fault Tolerance
and Parallel File Systems

Combination of hardware and software ensures
continued operation in face of failures:

–  RAID techniques hide disk failures
–  Redundant controllers and shared access to storage
–  Heartbeat software and quorum directs server failover

8 Slide from Rob Ross, Rob Latham at ANL

Data Distribution
in Parallel File Systems

9 Slide Rob Ross, Rob Latham at ANL

Locking in Parallel File Systems
Most parallel file systems use locks to manage concurrent access
to files
• Files are broken up into lock units
• Clients obtain locks on units that they will access before
I/O occurs
• Enables caching on clients as well (as long as client has a lock, it
knows its cached data is valid)
• Locks are reclaimed from clients when others desire access

10

If an access touches any
data in a lock unit, the
lock for that region must
be obtained before access
occurs.

Slide from Rob Ross, Rob Latham at ANL

Locking and Concurrent Access

11 Slide from Rob Ross, Rob Latham at ANL

3D (reversing the decomp)

Logical

Physical

Slide from John Shalf

3D (block alignment issues)

720 bytes 720 bytes

Logical

Physical
8192 bytes

• Block updates require mutual exclusion
• Block thrashing on distributed FS
• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation
• Unaligned block accesses can kill performance! (but are necessary in practical I/O
solutions)

Writes not aligned
to block boundaries

Slide from John Shalf

Small Writes

How will the parallel file system perform with
small writes (less than the size of a lock unit)?

14

15

Process 0 Process 0 Process 0 Process 0

Contiguous and
Noncontiguous I/O

•  Contiguous I/O moves data from a single memory
block into a single file region

•  Noncontiguous I/O has three forms:
–  Noncontiguous in memory, noncontiguous in file, or

noncontiguous in both
•  Structured data leads naturally to noncontiguous I/O

(e.g. block decomposition)
•  Describing noncontiguous accesses with a single

operation passes more knowledge to I/O system

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both

Slide from Rob Ross, Rob Latham at ANL

Stressing the I/O System
•  Computational science applications exhibit

complex I/O patterns that are unique, and how
we describe these patterns influences
performance.

•  Accessing from large numbers of processes
has the potential to overwhelm the storage
system. How we describe the relationship
between accesses influences performance.

•  In some cases we simply need to reduce the
number of processes accessing the storage
system in order to match number of servers
or limit concurrent access.

16 Slide from Rob Ross, Rob Latham at ANL

Serial I/O

0 1 2 3 4

File

processors

•  Each processor sends its data to the
master who then writes the data to a
file

•  Advantages
• Simple
• May perform ok for very small IO sizes

•  Disadvantages
• Not scalable
• Not efficient, slow for any large number
of processors or data sizes

•  May not be possible if memory
constrained

5

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

• Each processor writes its own data to a separate file
• Advantages

• Simple to program
• Can be fast -- (up to a point)

• Disadvantages
• Can quickly accumulate many files
• Hard to manage
• Requires post processing
• Difficult for storage systems, HPSS, to handle many small files
• Can overwhelm the file system with many writers

5

File

Parallel I/O Single-file

0 1 2 3 4

File

processors

• Each processor writes its own data to the same file
using MPI-IO mapping

• Advantages
• Single file
• Manageable data

• Disadvantages
• Shared files may not perform as well as one-file-per-processor
models

5

Reduced Writers to Single-file

0 1 2 3 4

File

processors

• Best performance when # of writers is multiple of (1-4) # of IO nodes
• Subset of processors writes data to single file
• Advantages

• Single file; manageable data
• Better performance than all tasks writing for high concurrency jobs

• Disadvantages
• This is a pain to program
• User shouldn’t have to do this!

5

Users don’t need to do this at the application layer

MPI-IO

21

What is MPI-IO?

•  Parallel I/O interface for MPI programs
•  Allows users to write shared files with a

simple interface
•  Supports:

–  Derived data types
–  Collective I/O
–  Views

22

23

Independent and Collective I/O

•  Independent I/O operations specify only what a single process will
do
–  Independent I/O calls obscure relationships between I/O on other

processes
•  Many applications have phases of computation and I/O

–  During I/O phases, all processes read/write data
•  Collective I/O is coordinated access to storage by a group of

processes
–  Collective I/O functions are called by all processes participating in I/O
–  Allows I/O layers to know more about access as a whole, more

opportunities for optimization in lower software layers, better
performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Slide from Rob Ross, Rob Latham at ANL

MPI-IO Optimizations

•  Collective Buffering
–  Consolidates I/O requests from procs
–  Only a subset of procs (called aggregators) write

to the file
–  Key point is to limit writers so that procs are not

competing for same I/O block of data
–  Various algorithms exist for aligning data to block

boundaries
–  Collective buffering is controlled by MPI-IO hints:

romio_cb_read, romio_cb_write, cb_buffer_size,
cb_nodes, cb_config_list

24

When to use collective buffering
•  The smaller the write, the more likely it is to benefit

from collective buffering
•  Large contiguous I/O will not benefit from collective

buffering. (If write size is larger than I/O block then
there will not be contention from multiple procs for
that block.)

•  Non-contiguous writes of any size will not see a
benefit from collective buffering

•  Set number of collective buffering nodes to multiple
of I/O nodes

25

Noncontiguous I/O Optimization:
Data Sieving

•  Data sieving is used to
combine lots of small
accesses into a single
larger one
–  Remote file systems (parallel or

not) tend to have high latencies
–  Reducing # of operations

important

•  Similar to how a block-
based file system interacts
with storage

•  Trade off - read big data
chunks, but need more
memory

Buffer

Memory

File

Data Sieving Read Transfers

26 Slide material from Rob Ross, Rob Latham at ANL

27

Collective I/O Optimization:
Two-Phase I/O

•  Problems with independent, noncontiguous access
–  Lots of small accesses
–  Independent data sieving reads lots of extra data, can exhibit

false sharing
•  Idea: Reorganize access to match layout on disks

–  Single processes use data sieving to get data for many
•  Second “phase” redistributes data to final destinations
•  Two-phase writes operate in reverse (redistribute then I/O)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Slide from Rob Ross, Rob Latham at ANL

MPI-IO Summary

•  MPI-IO is “middle ware” in the I/O stack
•  Provides optimizations typically low

performing I/O patterns (non-contiguous I/O
and small block I/O)

•  You could use MPI-IO directly, but better to
use a high level I/O library

28

High Level Parallel I/O
Libraries

(HDF5 and Parallel-NetCDF)

29

What is a High Level Parallel I/O
Library?

•  An API which helps to express scientific
simulation data in a more natural way
–  Multi-dimensional data, labels and tags, non-contiguous

data, typed data
•  Typically sits on top of MPI-IO layer and can use

MPI-IO optimizations
•  Offer

–  Simplicity for visualization and analysis
–  Portable formats - can run on one machine and take

output to another
–  Longevity - output will last and be accessible with

library tools and no need to remember version number
of code

Common Storage Formats

•  ASCII:
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Non-portable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Parallel NetCDF
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-describing

object-model API

Many NERSC
users at this level.
We would like to

encourage users to
transition to a

higher IO library

But what about performance?
•  Hand tuned I/O for a particular application and

architecture will likely perform better, but …
•  Purpose of I/O libraries is not only portability,

longevity, simplicity, but productivity
•  Using own binary file format forces user to

understand layers below the application to get
optimal IO performance

•  Every time code is ported to a new machine or
underlying file system is changed or upgraded,
user is required to make changes to improve IO
performance

•  Let other people do the work
–  HDF5/PnetCDF can be optimized for given platforms and

file systems by library developers
•  Goal is for shared file performance to be ‘close

enough’

HDF5 Data Model

•  Groups
–  Arranged in directory

hierarchy
–  root group is always ‘/’

•  Datasets
–  Dataspace
–  Datatype

•  Attributes
–  Bind to Group & Dataset

•  References
–  Similar to softlinks
–  Can also be subsets of

data

“/”
(root)

“Dataset0”
type,space

“Dataset1”
type, space

“subgrp”

“time”=0.2345

“validity”=None

“author”=Jane Doe

“Dataset0.1”
type,space

“Dataset0.2”
type,space

“date”=10/24/2006

Example HDF5 file output
HDF5 "example_file.h5" {
GROUP "/" {
 DATASET "hamiltonian_000" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 }
 }
 DATASET "hamiltonian_001" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 }
 }
 DATASET "hamiltonian_002" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
 }
 }
}

The HDF Group

•  HDF5 is maintained by a non-profit company called
the HDF Group

•  Example code and documentation can be found
here:

•  http://www.hdfgroup.org/HDF5/

Parallel NetCDF Library

•  Parallel implementation of netCDF
storage format from Unidata

•  Can read netCDF files
•  Like HDF5 can store complex data

structures, arrays, vectors, grids,
text

•  Built to take advantage of MPI-IO
optimizations

•  Portable Data Format

Parallel NetCDF Support

•  Parallel NetCDF is maintained by a
group at Argonne National Lab

•  More information, code examples
and documentation can be found
here:

•  http://trac.mcs.anl.gov/projects/
parallel-netcdf

Recommendations
•  Think about the big picture

–  Run time vs Post Processing trade off
–  Decide how much IO overhead you can afford
–  Data Analysis
–  Portability
–  Longevity

•  H5dump works on all platforms
•  Can view an old file with h5dump
•  If you use your own binary format you must keep track of

not only your file format version but the version of your
file reader as well

–  Storability

File Striping on Lustre File
System

39

What is File Striping?

•  Lustre file system on Franklin made up of an
underlying set of parallel I/O servers
–  OSSs (Object Storage Servers) - nodes dedicated to

I/O connected to high speed torus interconect
–  OSTs (Object Storage Targets) software abstraction

of physical disk (1 OST maps to 1 LUN)
•  File is said to be striped when read and write

operations access multiple OSTs concurrently
•  Striping can increase I/O performance since

writing or reading from multiple OSTs
simultaneously increases the available I/O
bandwidth

Default Striping on Franklin /
scratch

•  3 parameters characterize striping pattern of a file
–  Stripe count

•  Number of OSTs file is split across
•  Default is 2

–  Stripe size
•  Number of bytes to write on each OST before cycling to next OST
•  Default is 1MB

–  OST offset
•  Indicates starting OST
•  Default is round robin across all requests on system

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

Default Stripe Count of 2 on /scratch

•  Pros
–  Get 2 times the bandwidth you could from using 1 OST
–  Max bandwidth to 1 OST ~ 350 MB/Sec
–  Using 2 OSTs ~700 MB/Sec

•  Cons
–  For better or worse your file now is in 2 different places
–  Metadata operations like ‘ls -l’ on the file could be slower

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

Why a stripe count of 2?

•  Balance
–  With a few important exceptions, should work decently for

most users
•  Protection

–  Each OST is backed up by a physical disk (LUN)
–  Stripe count of 1 leave us vulnerable to single user writing out

huge amount of data filling the disk
•  Striping of 2 is a reasonable compromise, although not

good for large shared files

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

• Each processor writes its own data to a separate file
• Advantages

• Simple to program
• Can be fast -- (up to a point)

• Disadvantages
• Can quickly accumulate many files
• Hard to manage
• Requires post processing
• Difficult for storage systems, HPSS, to handle many small files
• Can overwhelm the file system with many writers

5

File

One File-Per-Processor IO with
Stripe Count of 1

•  Use all OSTs but don’t add more
contention than is necessary

2 OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Torus Network

0 1 2 3 4 5 38,000

OSS 24

Parallel I/O Single-file

0 1 2 3 4

File

processors

• Each processor writes its own data to the same file
using MPI-IO mapping

• Advantages
• Single file
• Manageable data

• Disadvantages
• Shared files may not perform as well as one-file-per-processor
models

5

Shared File I/O with Default Stripe
Count 2

•  All processors writing shared file will write to 2 OSTs
•  No matter how much data the application is writing, it won’t

get more than ~700 MB/sec (2 OSTs * 350 MB/Sec)
•  Less sophisticated than you might think - no optimizations

for matching processor writer to same OST
•  Need to use more OSTs for large shared files

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Torus Network

0 1 2 3 4 5 38,000

OSS 24

Shared File I/O with Stripe Count 48

•  Now Striping over all 48 OSTs
•  Increased available bandwidth to application

–  Theoretically (700 MB/Sec (OSS Max) * 20 OSSs)
–  In practice 11-12 GB/Sec

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

0 1 2 3 4 5 38,000

OSS 24

Torus Network

Changing the Default Stripe Count
•  A number of applications will see benefits from

changing the default striping
•  Striping can be set at a file or directory level
•  When striping set on a directory: all files created in that

directory with inherit striping set on the directory

•  Stripe size - # bytes written on each OST before cycling
to next OST

•  OST offset - indicates starting OST
•  Stripe count - # of OSTs file is split across

lstripe <directory|file> <stripe size> <OST Offset> <stripe count>
lstripe mydirectory 0 -1 X

Please contact consultants if you have low performing I/O.
There may be something simple we can do to increase

performance substantially

NERSC Striping Command
Shortcuts

•  Unfortunately users need to know about striping in
order to get decent I/O performance for I/O intensive
applications

•  NERSC has tried to encapsulate messy details with 3
commands

•  Usage >> stripe_large mydirectory
Size of File Single File I/O File Per Processor I/

O
<1 GB Do Nothing Use

default striping
“stripe_fpp” or use
default striping

1GB - 10 GB “stripe_small” “stripe_fpp” or use
default striping

10GB - 100 GB “stripe_med” “stripe_fpp” or use
default striping

100GB - 1TB+ “stripe_large” Ask consultants

I/O on Hopper Phase 1

•  Like Franklin, Hopper will use the
Lustre file system

•  Using LSI disks rather than DDN on
Franklin, could be some performance
differences

•  However, performance
recommendations remain the same

•  Likely 2 scratch file systems with peak
I/O rates of ~25GB/sec

•  2PB of disk

Best Practices

•  Do large I/O: write fewer big chunks of data
(1MB+) rather than small bursty I/O

•  Do parallel I/O.
–  Serial I/O (single writer) can not take advantage of

the system’s parallel capabilities.
•  Stripe large files over many OSTs.
•  If job uses many cores, reduce the number

of tasks performing IO
•  Use a single, shared file instead of 1 file per

writer, esp. at high parallel concurrency.
•  Use an IO library API and write flexible,

portable programs.

Questions?

Franklin Striping Summary
•  Franklin Default Striping

–  Stripe size - 1MB (enter ‘0’ for default)
–  OST offset - round robin starting OST (enter ‘ -1’

for default)
–  Stripe over 2 OSTs (Stripe count 4)

•  One File-Per-Processor
–  “lfs set stripe mydir 0 -1 1”

•  Large shared files
–  “lfs setstripe mydir 0 -1 48”

•  Medium shared files
–  Experiment a little 10-20 OSTs
–  “lfs setstripe mydir 0 -1 11”

Common Physical Layouts
For Parallel I/O

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it

is stored physically as domain-decomposed chunks)

Walk through the I/O software stack in reverse order

56 Slide from Rob Ross, Rob Latham at ANL

Tutorial Outline

Parallel I/O:
A User Perspective

•  Wish List
–  Write data from multiple processors into a single file
–  File can be read in the same manner regardless of the

number of CPUs that read from or write to the file. (eg.
want to see the logical data layout… not the physical
layout)

–  Do so with the same performance as writing one-file-per-
processor (only writing one-file-per-processor because of
performance problems)

–  And make all of the above portable from one machine to
the next

Data Sieving Write Operations

Buffer

Memory

File

Data Sieving Write Transfers

 Data sieving for writes is
more complicated
–  Must read the entire region first
–  Then make changes in buffer
–  Then write the block back

 Requires locking in the
file system
–  Can result in false sharing

(interleaved access)

 PFS supporting
noncontiguous writes is
preferred

58 Slide from Rob Ross, Rob Latham at ANL

