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Outline 

•  Review of parallel file systems 
•  Application Parallel I/O strategies 

–  MPI-IO 
–  Parallel I/O libraries 

•  Lustre Optimizations 
•  Preview of Hopper I/O 
•  Best practices and recommendations 
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Getting bigger all the time 
•  User I/O needs 

growing each year in 
scientific community 

•  For our largest users 
I/O parallelism is 
mandatory 

•  I/O remains a 
bottleneck for many 
users   

Images from David Randall, Paola Cessi, John Bell, T Scheibe 



Disk Access Rates over Time 

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph. 
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What is a File System? 

•  A file system is a method for storing, organizing, 
manipulating, navigating, accessing and retrieving 
data files 
–  This is a layer that mediates transactions between 

the Operating System and the Storage Device. 
•  A file system deals with “data” and “metadata” (data 

about data)  
•  We often refer to a “file system name” as the root of 

a hierarchical directory tree, e.g. “the /home file 
system.” 
–  We can treat this as “one big disk,” but it may 

actually be a complex collection of disk arrays, IO 
servers, and networks. 



Terminology: Metadata 

•  Data about data 
•  File systems store information about files 

externally to those files. 
•  Linux uses an inode, which stores 

information about files and directories  (size 
in bytes, device id, user id, group id, mode, timestamps, 
link info, pointers to disk blocks, file size…) 

•  Any time a file’s attributes change or info 
is desired (e.g., ls –l) metadata has to be 
retrieved from the metadata server  

•  Metadata operations are IO operations 
which require time and disk space. 



Generic Parallel File System 
Architecture 

Compute 
Nodes 

Internal 
Network 

Storage 
Hardware -- 
Disks 

Disk controllers - 
manage failover 

I/O Servers 

External 
Network - 
(Likely FC) 

MDS I/O I/O I/O I/O I/O I/O I/O 



Franklin Luster Configuration in /scratch 
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 24 OSS 
48 OSTs 

Franklin Compute and Interactive Nodes 

“The Torus” 

6 DDN 
48 LUN 

FC Network 

… 

Connectivity and configuration set in a “good” way for 
parallelism. Using 24 OSTs will spread evenly over the DDN 
appliances. 

… 

Peak I/O system 
bandwidth  is �
~17 Gbyte/sec.



Fault Tolerance  
and Parallel File Systems 

Combination of hardware and software ensures 
continued operation in face of failures: 

–  RAID techniques hide disk failures 
–  Redundant controllers and shared access to storage 
–  Heartbeat software and quorum directs server failover 

8 Slide from Rob Ross, Rob Latham at ANL 



Data Distribution  
in Parallel File Systems 

9 Slide Rob Ross, Rob Latham at ANL 



Locking in Parallel File Systems 
Most parallel file systems use locks to manage concurrent access 
to files 
• Files are broken up into lock units 
• Clients obtain locks on units that they will access before 
I/O occurs 
• Enables caching on clients as well (as long as client has a lock, it 
knows its cached data is valid) 
• Locks are reclaimed from clients when others desire access  
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If an access touches any 
data in a lock unit, the 
lock for that region must 
be obtained before access 
occurs. 

Slide from Rob Ross, Rob Latham at ANL 



Locking and Concurrent Access 

11 Slide from Rob Ross, Rob Latham at ANL 



3D (reversing the decomp) 

Logical

Physical

Slide from John Shalf 



3D (block alignment issues) 

720 bytes 720 bytes

Logical

Physical
8192 bytes

• Block updates require mutual exclusion
• Block thrashing on distributed FS
• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation
• Unaligned block accesses can kill performance! (but are necessary in practical I/O 
solutions)

Writes not aligned 
to block boundaries

Slide from John Shalf 



Small Writes 

How will the parallel file system perform with 
small writes (less than the size of a lock unit)? 
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Process 0 Process 0 Process 0 Process 0 

Contiguous and 
Noncontiguous I/O 

•  Contiguous I/O moves data from a single memory 
block into a single file region 

•  Noncontiguous I/O has three forms: 
–  Noncontiguous in memory, noncontiguous in file, or 

noncontiguous in both 
•  Structured data leads naturally to noncontiguous I/O 

(e.g. block decomposition) 
•  Describing noncontiguous accesses with a single 

operation passes more knowledge to I/O system 

Contiguous Noncontiguous 
in File 

Noncontiguous 
in Memory 

Noncontiguous 
in Both 

Slide from Rob Ross, Rob Latham at ANL 



Stressing the I/O System 
•  Computational science applications exhibit 

complex I/O patterns that are unique, and how 
we describe these patterns influences 
performance. 

•  Accessing from large numbers of processes 
has the potential to overwhelm the storage 
system. How we describe the relationship 
between accesses influences performance. 

•  In some cases we simply need to reduce the 
number of processes accessing the storage 
system in order to match number of servers 
or limit concurrent access. 

16 Slide from Rob Ross, Rob Latham at ANL 



Serial I/O  

0 1 2 3 4 

File 

processors 

•  Each processor sends its data to the 
master who then writes the data to a 
file 

•  Advantages 
• Simple 
• May perform ok for very small IO sizes 

•  Disadvantages 
• Not scalable 
• Not efficient, slow for any large number 
of processors or data sizes 

•  May not be possible if memory 
constrained 
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Parallel I/O Multi-file  

0 1 2 3 4 

File File File File File 

processors 

• Each processor writes its own data to a separate file 
• Advantages 

• Simple to program 
• Can be fast -- (up to a point) 

• Disadvantages 
• Can quickly accumulate many files 
• Hard to manage 
• Requires post processing 
• Difficult for storage systems, HPSS, to handle many small files 
• Can overwhelm the file system with many writers 
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File 



Parallel I/O Single-file  

0 1 2 3 4 

File 

processors 

• Each processor writes its own data to the same file 
using MPI-IO mapping 

• Advantages 
• Single file 
• Manageable data 

• Disadvantages 
• Shared files may not perform as well as one-file-per-processor 
models 
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Reduced Writers to Single-file  

0 1 2 3 4 

File 

processors 

• Best performance when # of writers is multiple of (1-4) # of IO nodes 
• Subset of processors writes data to single file 
• Advantages 

• Single file; manageable data 
• Better performance than all tasks writing for high concurrency jobs 

• Disadvantages 
• This is a pain to program 
• User shouldn’t have to do this! 
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Users don’t need to do this at the application layer 



MPI-IO 

21 



What is MPI-IO? 

•  Parallel I/O interface for MPI programs 
•  Allows users to write shared files with a 

simple interface 
•  Supports: 

–  Derived data types 
–  Collective I/O 
–  Views 

22 
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Independent and Collective I/O 

•  Independent I/O operations specify only what a single process will 
do 
–  Independent I/O calls obscure relationships between I/O on other 

processes  
•  Many applications have phases of computation and I/O 

–  During I/O phases, all processes read/write data 
•  Collective I/O is coordinated access to storage by a group of 

processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more 

opportunities for optimization in lower software layers, better 
performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 

Slide from Rob Ross, Rob Latham at ANL 



MPI-IO Optimizations 

•  Collective Buffering 
–  Consolidates I/O requests from procs 
–  Only a subset of procs (called aggregators) write 

to the file 
–  Key point is to limit writers so that procs are not 

competing for same I/O block of data 
–  Various algorithms exist for aligning data to block 

boundaries 
–  Collective buffering is controlled by MPI-IO hints: 

romio_cb_read, romio_cb_write, cb_buffer_size, 
cb_nodes, cb_config_list 

24 



When to use collective buffering 
•  The smaller the write, the more likely it is to benefit 

from collective buffering 
•  Large contiguous I/O will not benefit from collective 

buffering.  (If write size is larger than I/O block then 
there will not be contention from multiple procs for 
that block.) 

•  Non-contiguous writes of any size will not see a 
benefit from collective buffering 

•  Set number of collective buffering nodes to multiple 
of I/O nodes 

25 



Noncontiguous I/O Optimization:  
Data Sieving 

•  Data sieving is used to 
combine lots of small 
accesses into a single 
larger one 
–  Remote file systems (parallel or 

not) tend to have high latencies 
–  Reducing # of operations 

important 

•  Similar to how a block-
based file system interacts 
with storage 

•  Trade off - read big data 
chunks, but need more 
memory 

Buffer 

Memory 

File 

Data Sieving Read Transfers 

26 Slide material from Rob Ross, Rob Latham at ANL 
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Collective I/O Optimization:  
Two-Phase I/O 

•  Problems with independent, noncontiguous access 
–  Lots of small accesses 
–  Independent data sieving reads lots of extra data, can exhibit 

false sharing 
•  Idea: Reorganize access to match layout on disks 

–  Single processes use data sieving to get data for many 
•  Second “phase” redistributes data to final destinations 
•  Two-phase writes operate in reverse (redistribute then I/O) 

Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 

Slide from Rob Ross, Rob Latham at ANL 



MPI-IO Summary 

•  MPI-IO is “middle ware” in the I/O stack 
•  Provides optimizations typically low 

performing I/O patterns (non-contiguous I/O 
and small block I/O) 

•  You could use MPI-IO directly, but better to 
use a high level I/O library 

28 



High Level Parallel I/O 
Libraries 

(HDF5 and Parallel-NetCDF) 

29 



What is a High Level Parallel I/O 
Library? 

•  An API which helps to express scientific 
simulation data in a more natural way 
–  Multi-dimensional data, labels and tags, non-contiguous 

data, typed data 
•  Typically sits on top of MPI-IO layer and can use 

MPI-IO optimizations 
•  Offer  

–  Simplicity for visualization and analysis 
–  Portable formats - can run on one machine and take 

output to another 
–  Longevity - output will last and be accessible with 

library tools and no need to remember version number 
of code 



Common Storage Formats 

•  ASCII:   
–  Slow 
–  Takes more space! 
–  Inaccurate 

•  Binary 
–  Non-portable (eg. byte ordering and types sizes) 
–  Not future proof 
–  Parallel I/O using MPI-IO 

•  Self-Describing formats 
–  NetCDF/HDF4, HDF5, Parallel NetCDF 
–  Example in HDF5: API implements Object DB model in portable file 
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO) 

•  Community File Formats 
–  FITS, HDF-EOS, SAF, PDB, Plot3D 
–  Modern Implementations built on top of HDF, NetCDF, or other self-describing 

object-model API 

Many NERSC 
users at this level.  
We would like to 

encourage users to 
transition to a 

higher IO library 



But what about performance? 
•  Hand tuned I/O for a particular application and 

architecture will likely perform better, but … 
•  Purpose of I/O libraries is not only portability, 

longevity, simplicity, but productivity 
•  Using own binary file format forces user to 

understand layers below the application to get 
optimal IO performance 

•  Every time code is ported to a new machine or 
underlying file system is changed or upgraded, 
user is required to make changes to improve IO 
performance 

•  Let other people do the work 
–  HDF5/PnetCDF can be optimized for given platforms and 

file systems by library developers 
•  Goal is for shared file performance to be ‘close 

enough’ 



HDF5 Data Model 

•  Groups 
–  Arranged in directory 

hierarchy 
–  root group is always ‘/’ 

•  Datasets 
–  Dataspace 
–  Datatype 

•  Attributes 
–  Bind to Group & Dataset 

•  References 
–  Similar to softlinks 
–  Can also be subsets of 

data 

“/”
(root)

“Dataset0”
type,space

“Dataset1”
type, space

“subgrp”

“time”=0.2345

“validity”=None

“author”=Jane Doe

“Dataset0.1”
type,space

“Dataset0.2”
type,space

“date”=10/24/2006



Example HDF5 file output 
HDF5 "example_file.h5" { 
GROUP "/" { 
   DATASET "hamiltonian_000" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
      } 
   } 
   DATASET "hamiltonian_001" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
      } 
   } 
   DATASET "hamiltonian_002" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 
      } 
   } 
} 



The HDF Group 

•  HDF5 is maintained by a non-profit company called 
the HDF Group 

•  Example code and documentation can be found 
here: 

•  http://www.hdfgroup.org/HDF5/ 



Parallel NetCDF Library 

•  Parallel implementation of netCDF 
storage format from Unidata 

•  Can read netCDF files 
•  Like HDF5 can store complex data 

structures, arrays, vectors, grids, 
text 

•  Built to take advantage of MPI-IO 
optimizations 

•  Portable Data Format 



Parallel NetCDF Support 

•  Parallel NetCDF is maintained by a 
group at Argonne National Lab 

•  More information, code examples 
and documentation can be found 
here: 

•  http://trac.mcs.anl.gov/projects/
parallel-netcdf 



Recommendations 
•  Think about the big picture 

–  Run time vs Post Processing trade off 
–  Decide how much IO overhead you can afford 
–  Data Analysis 
–  Portability 
–  Longevity 

•  H5dump works on all platforms 
•  Can view an old file with h5dump 
•  If you use your own binary format you must keep track of 

not only your file format version but the version of your 
file reader as well 

–  Storability 



File Striping on Lustre File 
System 
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What is File Striping? 

•  Lustre file system on Franklin made up of an 
underlying set of parallel I/O servers  
–  OSSs (Object Storage Servers) - nodes dedicated to 

I/O connected to high speed torus interconect 
–  OSTs (Object Storage Targets) software abstraction 

of physical disk (1 OST maps to 1 LUN) 
•  File is said to be striped when read and write 

operations access multiple OSTs concurrently 
•  Striping can increase I/O performance since 

writing or reading from multiple OSTs 
simultaneously increases the available I/O 
bandwidth 



Default Striping on Franklin /
scratch 

•  3 parameters characterize striping pattern of a file  
–  Stripe count 

•  Number of OSTs file is split across 
•  Default is 2 

–  Stripe size  
•  Number of bytes to write on each OST before cycling to next OST 
•  Default is 1MB 

–  OST offset  
•  Indicates starting OST 
•  Default is round robin across all requests on system 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



Default Stripe Count of 2 on /scratch 

•  Pros 
–  Get 2 times the bandwidth you could from using 1 OST 
–  Max bandwidth to 1 OST ~ 350 MB/Sec 
–  Using 2 OSTs ~700 MB/Sec 

•  Cons  
–  For better or worse your file now is in 2 different places 
–  Metadata operations like ‘ls -l’ on the file could be slower 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



Why a stripe count of 2? 

•  Balance  
–  With a few important exceptions, should work decently for 

most users 
•  Protection  

–  Each OST is backed up by a physical disk (LUN) 
–  Stripe count of 1 leave us vulnerable to single user writing out 

huge amount of data filling the disk 
•  Striping of 2 is a reasonable compromise, although not 

good for large shared files 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



Parallel I/O Multi-file  

0 1 2 3 4 

File File File File File 

processors 

• Each processor writes its own data to a separate file 
• Advantages 

• Simple to program 
• Can be fast -- (up to a point) 

• Disadvantages 
• Can quickly accumulate many files 
• Hard to manage 
• Requires post processing 
• Difficult for storage systems, HPSS, to handle many small files 
• Can overwhelm the file system with many writers 

5 

File 



One File-Per-Processor IO with 
Stripe Count of 1 

•  Use all OSTs but don’t add more 
contention than is necessary 

2 OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

Torus Network 

0 1 2 3 4 5 38,000 

OSS 24 



Parallel I/O Single-file  

0 1 2 3 4 

File 

processors 

• Each processor writes its own data to the same file 
using MPI-IO mapping 

• Advantages 
• Single file 
• Manageable data 

• Disadvantages 
• Shared files may not perform as well as one-file-per-processor 
models 

5 



Shared File I/O with Default Stripe 
Count 2 

•  All processors writing shared file will write to 2 OSTs 
•  No matter how much data the application is writing, it won’t 

get more than ~700 MB/sec (2 OSTs * 350 MB/Sec) 
•  Less sophisticated than you might think - no optimizations 

for matching processor writer to same OST 
•  Need to use more OSTs for large shared files 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

Torus Network 

0 1 2 3 4 5 38,000 

OSS 24 



Shared File I/O with Stripe Count 48 

•  Now Striping over all 48 OSTs 
•  Increased available bandwidth to application 

–  Theoretically (700 MB/Sec (OSS Max) * 20 OSSs) 
–  In practice 11-12 GB/Sec 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

0 1 2 3 4 5 38,000 

OSS 24 

Torus Network 



Changing the Default Stripe Count 
•  A number of applications will see benefits from 

changing the default striping 
•  Striping can be set at a file or directory level 
•  When striping set on a directory: all files created in that 

directory with inherit striping set on the directory 

•  Stripe size - # bytes written on each OST before cycling 
to next OST 

•  OST offset - indicates starting OST  
•  Stripe count - # of OSTs file is split across 

lstripe <directory|file> <stripe size> <OST Offset> <stripe count> 
lstripe mydirectory 0 -1 X 

Please contact consultants if you have low performing I/O.  
There may be something simple we can do to increase 

performance substantially 



NERSC Striping Command 
Shortcuts 

•  Unfortunately users need to know about striping in 
order to get decent I/O performance for I/O intensive 
applications 

•  NERSC has tried to encapsulate messy details with 3 
commands 

•  Usage >> stripe_large mydirectory 
Size of File Single File I/O File Per Processor I/

O 
<1 GB Do Nothing Use 

default striping 
“stripe_fpp” or use 
default striping 

1GB - 10 GB “stripe_small” “stripe_fpp” or use 
default striping 

10GB - 100 GB “stripe_med” “stripe_fpp” or use 
default striping 

100GB - 1TB+ “stripe_large” Ask consultants 



I/O on Hopper Phase 1 

•  Like Franklin, Hopper will use the 
Lustre file system 

•  Using LSI disks rather than DDN on 
Franklin, could be some performance 
differences 

•  However, performance 
recommendations remain the same 

•  Likely 2 scratch file systems with peak 
I/O rates of ~25GB/sec 

•  2PB of disk 



Best Practices 

•  Do large I/O: write fewer big chunks of data 
(1MB+)  rather than small bursty I/O 

•  Do parallel I/O.  
–  Serial I/O (single writer) can not take advantage of 

the system’s parallel capabilities. 
•  Stripe large files over many OSTs. 
•  If job uses many cores, reduce the number 

of tasks performing IO  
•  Use a single, shared file instead of 1 file per 

writer, esp. at high parallel concurrency. 
•  Use an IO library API and write flexible, 

portable programs. 



Questions? 



Franklin Striping Summary 
•  Franklin Default Striping 

–  Stripe size - 1MB (enter ‘0’ for default) 
–  OST offset - round robin starting OST (enter ‘ -1’ 

for default) 
–  Stripe over 2 OSTs (Stripe count 4) 

•  One File-Per-Processor 
–  “lfs set stripe mydir 0 -1 1” 

•  Large shared files  
–  “lfs setstripe mydir 0 -1 48” 

•  Medium shared files 
–  Experiment a little 10-20 OSTs 
–  “lfs setstripe mydir 0 -1 11” 



Common Physical Layouts 
For Parallel I/O 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it 

is stored physically as domain-decomposed chunks) 



Walk through the I/O software stack in reverse order 

56 Slide from Rob Ross, Rob Latham at ANL 

Tutorial Outline 



Parallel I/O:  
A User Perspective 

•  Wish List 
–  Write data from multiple processors into a single file 
–  File can be read in the same manner regardless of the 

number of CPUs that read from or write to the file. (eg. 
want to see the logical data layout… not the physical 
layout) 

–  Do so with the same performance as writing one-file-per-
processor (only writing one-file-per-processor because of 
performance problems) 

–  And make all of the above portable from one machine to 
the next 



Data Sieving Write Operations 

Buffer 

Memory 

File 

Data Sieving Write Transfers 

 Data sieving for writes is 
more complicated 
–  Must read the entire region first 
–  Then make changes in buffer 
–  Then write the block back 

 Requires locking in the 
file system 
–  Can result in false sharing 

(interleaved access) 

 PFS supporting 
noncontiguous writes is 
preferred 
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