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The Gyrokinetic Toroidal Code

• 3D particle-in-cell code to study microturbulence in 
magnetically confined fusion plasmas. 

• Solves the gyro-averaged Vlasov equation. 
• Gyrokinetic Poisson equation solved in real space.
• Low noise δf method.
• Global code (full torus as opposed to only a flux tube).
• Massively parallel: typical runs done on 1024 processors.
• Electrostatic approximation with adiabatic electrons.
• Nonlinear and fully self-consistent.
• Written in Fortran 90/95
• Well optimized for superscalar processors



Particle-in-cell (PIC) method

• Particles sample distribution function.
• The particles interact via a grid, on which the potential 

is calculated from deposited charges.

The PIC Steps
• “SCATTER”, or deposit, 

charges on the grid (nearest 
neighbors)

• Solve Poisson equation
• “GATHER” forces on each 

particle from potential
• Move particles (PUSH)
• Repeat…



Charge Deposition for charged rings:
4-point average method

Point-charge particles replaced by charged rings due to gyro-averaging

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC



Quasi-2D structure of potential

• Fast particle motion along the magnetic field lines leads to a 
quasi-2D structure in the electrostatic potential

• Poisson equation needs only to be solved on 2D poloidal plane



GTC mesh and geometry

(Ψ,α,ζ)  ⇒ α = θ − ζ/q

Saves a factor of about 
100 in CPU time

ζ

Field-line following coordinates

θ

ζ

Poloidal plane (cross-section)
unstructured mesh



Original parallel model in GTC:
1D toroidal domain decomposition

• Uses Message Passing Interface (MPI)
• Each MPI process holds a toroidal section
• Most of the communications due to particles moving in and out 

of the toroidal domains (10% of particles at each time step)
• Efficient “ring-type” communication when moving particles.
• Scales perfectly but limited to about 64 or 128 domains due to 

(Landau) damping of shorter wavelength modes.



Scaling of original version of GTC 



Then came Seaborg…

• The arrival of the IBM SP Power 3 Seaborg at NERSC 
opened new possibilities for higher performance.

• First step: port GTC from the T3E to the SP and optimize 
single processor performance
– Larger memory allowed us to reuse calculations done in the 

charge deposition subroutine
• The Symmetric Multi-Processing (SMP) nodes of the IBM 

SP gave an easy path to higher concurrency for GTC: 
Shared memory programming

• With 16 processors per node, Mixed-model MPI+OpenMP
would allow GTC to run on 1,024 processors instead of 
only 64 



New level of parallelism in GTC:
Loop-level

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads



Why loop-level parallelism?

• VERY EASY TO IMPLEMENT…
• Although one has to watch out for potential conflicts 

between threads (processors) trying to write to the same 
memory location at the same time
– Easily solved by using thread-private copies of conflicting 

arrays
• 85% of the work in GTC reside in 4 loops over the 

number of particles on each MPI process.
• Adding the other loops pushes the amount of 

computational work in parallel loops beyond 90%.
• The bigger the loops (problem size), the more efficient 

is the calculation (we saw 98% on large simulations).



OpenMP example of loop-level
parallelism

• Simple but powerful OpenMP directives

!$omp parallel do private(psitmp,thetatmp,zetatmp,weight,&
!$omp&rhoi,r,ip,jt, ipjt,wz1,kk,wz0,larmor,rdum,ii,wp1,wp0,&

!$omp& tflr,im,tdum,j00,wt10,wt00,j01,wt11,wt01,ij)
do m=1,mp

psitmp=phase(1,m)

thetatmp=phase(2,m)
zetatmp=phase(3,m)

weight=phase(5,m)
rhoi=phase(6,m)*g_inv

...
enddo



Mixed-model MPI+OpenMP lead to
first ITER-size simulations

• With mixed-model a single MPI process is assigned to 
each SMP node on Seaborg
– Large amount of memory per MPI process (32 GB/proc!)
– Had to wait for 64-bit MPI to access it though…

• Allowed size scaling study of turbulent transport in 
tokamaks, including ITER size:
– 1 billion particles
– 125 million grid points
– 1,024 processors
– largest GTC run at the time



Interesting benchmark of OpenMP
on IBM SP and SGI Origin 2000

• SGI O2k has really only 2 
processors that share local 
memory symmetrically.

• The NUMA architecture 
performs poorly unless 
processor placement is 
used.

• The symmetric memory 
access for the processors 
on the IBM SP node is 
ideally adapted to the 
mixed-model algorithm.



Seaborg allows GTC to routinely
run on 1000+ processors



Then came the others…

• Newer, bigger, and faster computers continuously 
emerge.

• The 2002 record-breaking performance of the Earth 
Simulator vector computer took everybody by surprise.

• It prompted a renewed interest in vector processing.
• Cray introduced the X1 vector machine soon after.
• I was invited to participate in a study of modern vector 

architectures compared to current superscalar ones such 
as the IBM SP.

• The study was lead by Dr Leonid Oliker of the Future 
Technologies Group at LBL.



GTC vectorization work

• Started on the single-node NEC SX-6 at ARSC
• Porting GTC was very easy although the first tests on a 

single processor gave a very low performance
• Real work starts: profiling, vectorizing, optimizing, 

test, and… repeat several times
• Multi-processor optimization done on to the Earth 

Simulator and CRAY X1



Vectorization challenge for PIC:
Scatter operation

• The charge deposition step (scatter operation) writes to the 
charge accumulation array in a random fashion (particle 
positions are random), producing dependencies and memory 
conflicts whenever 2 or more particles have a common 
neighboring grid point    this prevents vectorization 

• In 1D, the charge deposition step with linear interpolation looks 
like this:
do i=1,nparticles

x = particle_position(i)
ix_grid = int(x)
dx = x – real(ix_grid)
charge(ix_grid) = charge(ix_grid)+q*(1-dx)
charge(ix_grid+1) = charge(ix_grid+1)+q*dx

end do

Indirect addressing!
Potential Conflicts



Avoiding memory dependencies:
The work-vector method (Nishiguchi ‘85)

Example of loop with indirect addressing similar to charge deposition:
DO i=1,np

charge(ix(i))=charge(ix(i)) + q(i)
END DO

Fully vectorizable loop using multiple copies (vector length of 256):
ALLOCATE(charge_tmp(256,ngrid)) Uses 256*ngrid*sizeof(charge_tmp)
DO i=1,np,256 of extra memory! (can be 1GB)

DO j=1,min(256,np-i+1)
charge_tmp(j,ix(i+j-1))=charge_tmp(j,ix(i+j-1)) + q(i+j-1)

END DO
END DO
DO i=1,256

DO ig=1,ngrid
charge(ig)=charge(ig) + charge_tmp(i,igrid)

END DO
END DO



Loop-level multithreading competes
directly with vectorization 

• Each Earth Simulator node has 8 vector processors 
sharing 16 GBytes of memory, allowing us to use 
GTC’s mixed-model MPI+OpenMP.

• However, loop-level work splitting with OpenMP 
reduces the number of loop operations, which in turn 
degrades vector efficiency Lower performance

• Charge deposition loop with OpenMP requires private 
copies of the grid array for each processor on the node.

• Combined with the 256 copies of the same grid array 
needed for vectorization, the loop-level OpenMP 
requires too much memory.  



Cache-less memory access issues
on the SX-6 and ES

• Better memory access is the secret to higher performance
• True for STORING to memory as well as FETCHING from it!

do m=1,mi
psitmp=zion(1,m)
thetatmp=zion(2,m)
zetatmp=zion(3,m)
rhoi=zion(6,m)*smu_inv
r=sqrt(2.0*psitmp)
ip=max(0,min(mpsi,int((r-a0)*delr+0.5)))
jt=max(0,min(mtheta(ip),int(thetatmp*pi2_inv*delt(ip)+0.5)))
ipjt=igrid(ip)+jt
wz1=(zetatmp-zetamin)*delz
…

Duplicate small arrays like “igrid” and “mtheta”:  !$duplicate
37% improvement on chargei, but uses even more memory…

Repeatedly accessing the same
memory bank before the bank busy

time is over from the last access
leads to poor memory performance!



Vector performance of main routines
on the Earth Simulator

ORIGINAL CODE BEFORE MODIFICATIONS:

PROG.UNIT  EXCLUSIVE        MFLOPS   V.OP  AVER.    BANK
TIME[sec](  % )          RATIO  V.LEN    CONF

--------- --------------- ------ ----- ----- ------
chargei 282.677( 54.4)    62.0   0.65   98.1 0.0000
pushi 125.211( 24.1)   320.1  67.51  196.8 4.3336
poisson 57.878( 11.1)   418.9  94.26  107.2   0.3158

CODE AFTER MODIFICATIONS TO CHARGEI, PUSHI, POISSON:

PROG.UNIT  EXCLUSIVE        MFLOPS   V.OP  AVER.    BANK
TIME[sec](  % )          RATIO  V.LEN    CONF

--------- --------------- ------ ----- ----- ------
chargei 89.924( 33.3)  1314.3  99.65  248.1 6.5002
pushi 93.877( 34.7)  2426.6  99.38  255.9 8.8139
poisson 26.239(  9.7)   918.1  99.71  252.7   3.2485

Note: the 2 tests do 
not have the same 
number of time steps 
so the times are 
different

Total = 1.412 Gflops per proc



GTC on the CRAY X1/X1E

• Must deal with multi-streaming on top of vectorization
• Same vectorizations apply.
• Easier to prevent vectorization of small inner loops
• Also needs the work-vector method with the same 

dimensions of 256 in MSP mode:
– 4 streams x 64 (vector length)
– Uses as much extra memory as the Earth Simulator

• Unvectorized and unstreamed loop in “shifti” slows 
down the calculation to a crawl 
– 54% of the time spent in that routine according to “pat”
– Was only 11% on the ES



The culprit in shifti

• “Unstreamed” and “unvectorized” loop due to nested if 
blocks: 

do m=m0,mi
zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zion(3,m)-zetamin
if( zetaright*zetaleft > 0 )then

zetaright=zetaright*0.5*pi_inv
zetaright=zetaright-real(floor(zetaright))
msend=msend+1
kzi(msend)=m
if( zetaright < 0.5 )then

msendright(1)=msendright(1)+1
iright(msendright(1))=m

else
msendleft(1)=msendleft(1)+1
ileft(msendleft(1))=m

endif
endif

enddo



New loop in shift

!dir$ preferstream
do imm=1,4

!dir$ prefervector
do m=(imm-1)*mi/4+1,imm*mi/4

zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zetamin-zion(3,m)
alpha=pi2*aint(1.0-pi4_inv*zetaleft)
beta=pi2*aint(1.0-pi4_inv*zetaright)
kappa=pi2*aint(1.0+zetaleft*zetaright*pi2sq_inv)
aright=(alpha+zetaleft) - (beta+zetaright) - kappa
aleft=(alpha+zetaleft) - (beta+zetaright) + kappa
if( aright > 0.0 )then

msend_r(imm)=msend_r(imm)+1
kzi_r(msend_r(imm),imm)=m

endif
if( aleft < 0.0 )then

msend_l(imm)=msend_l(imm)+1
kzi_l(msend_l(imm),imm)=m

endif
enddo

enddo



Did it work?

• Yes, the overall time spent in shifti went from 54% to only 4%!!

• On the Earth Simulator, the compiler can only deal with a single
conditional statement within a loop in order to vectorize that 
loop. Solution: split the loop in 2 parts.

• Improved performance on the ES but not as dramatic as on the 
X1.



Memory used by the vectorized
version of GTC (per processor)
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Flops/sec for higher
particle resolution
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High resolution simulations

• The algorithm to “push” the particles is very efficient 
on vector machines.

• This allows us to run high resolution simulations using 
a large number of particles.

• More particles means
– more phase space resolution (velocity + configuration space)
– lower discrete particle noise/fluctuations
– longer simulations
– higher efficiency on vector computers

• Without using OpenMP, we are back to only 1D 
domain decomposition and a max of 64-128 processors

• How to improve concurrency?



New parallel model: Domain
decomposition + particle splitting

• 1D Domain decomposition:
– Several MPI processes can now sit in 

a section of the torus
• Particle splitting method

– The particles in a toroidal section are 
equally divided between several MPI 
processes

• Particles randomly distributed between 
processors within a toroidal domain.

• No OpenMP
• Pure MPI version

Processor 2
Processor 3

Processor 0
Processor 1



Pure MPI parallel model ideal
for newest large scale computers

• New large scale computers such as Blue Gene/L and 
Cray XT3 allow only message passing for 
communication between processors.

• The MPI-only version of GTC has been very successful 
on those platforms.

• It achieved the highest performance of 7.2 TFlops on 
the Earth Simulator using 4,096 processors.

• Used over 16,000 processors on the Blue Gene/L 
computer at IBM Watson.

• Largest GTC production simulation recently carried out 
on 4,800 processors of the Cray XT3 at ORNL using 
28 billion particles.



Latest benchmark: weak scaling study
with fixed device size 
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Conclusions

• Benchmarking and optimizing work never ends
• New platforms with more processors and different 

characteristics are continuously being developed.
• To cope with the changes while wanting to achieve top 

performance, codes must be flexible and developers must 
be willing to modify their codes.

• Secret to high performance (in my opinion…)
– Data access (must feed the processor as fast as possible)
– Fast data access = good data layout
– Minimize communications

• Speed is not a substitute to “right answer”…
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