
Experiences benchmarking and
optimizing GTC on High Performance

Computers

Stéphane Ethier
Princeton Plasma Physics Laboratory

NERSC Users’ Group meeting
June 2006

Work Supported by DOE Contract No.DE-AC02-76CH03073 and
by the DOE SciDAC Center for Gyrokinetic Particle Simulation of

Turbulent Transport in Burning Plasmas.

The Gyrokinetic Toroidal Code

• 3D particle-in-cell code to study microturbulence in
magnetically confined fusion plasmas.

• Solves the gyro-averaged Vlasov equation.
• Gyrokinetic Poisson equation solved in real space.
• Low noise δf method.
• Global code (full torus as opposed to only a flux tube).
• Massively parallel: typical runs done on 1024 processors.
• Electrostatic approximation with adiabatic electrons.
• Nonlinear and fully self-consistent.
• Written in Fortran 90/95
• Well optimized for superscalar processors

Particle-in-cell (PIC) method

• Particles sample distribution function.
• The particles interact via a grid, on which the potential

is calculated from deposited charges.

The PIC Steps
• “SCATTER”, or deposit,

charges on the grid (nearest
neighbors)

• Solve Poisson equation
• “GATHER” forces on each

particle from potential
• Move particles (PUSH)
• Repeat…

Charge Deposition for charged rings:
4-point average method

Point-charge particles replaced by charged rings due to gyro-averaging

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

Quasi-2D structure of potential

• Fast particle motion along the magnetic field lines leads to a
quasi-2D structure in the electrostatic potential

• Poisson equation needs only to be solved on 2D poloidal plane

GTC mesh and geometry

(Ψ,α,ζ) ⇒ α = θ − ζ/q

Saves a factor of about
100 in CPU time

ζ

Field-line following coordinates

θ

ζ

Poloidal plane (cross-section)
unstructured mesh

Original parallel model in GTC:
1D toroidal domain decomposition

• Uses Message Passing Interface (MPI)
• Each MPI process holds a toroidal section
• Most of the communications due to particles moving in and out

of the toroidal domains (10% of particles at each time step)
• Efficient “ring-type” communication when moving particles.
• Scales perfectly but limited to about 64 or 128 domains due to

(Landau) damping of shorter wavelength modes.

Scaling of original version of GTC

Then came Seaborg…

• The arrival of the IBM SP Power 3 Seaborg at NERSC
opened new possibilities for higher performance.

• First step: port GTC from the T3E to the SP and optimize
single processor performance
– Larger memory allowed us to reuse calculations done in the

charge deposition subroutine
• The Symmetric Multi-Processing (SMP) nodes of the IBM

SP gave an easy path to higher concurrency for GTC:
Shared memory programming

• With 16 processors per node, Mixed-model MPI+OpenMP
would allow GTC to run on 1,024 processors instead of
only 64

New level of parallelism in GTC:
Loop-level

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads

Why loop-level parallelism?

• VERY EASY TO IMPLEMENT…
• Although one has to watch out for potential conflicts

between threads (processors) trying to write to the same
memory location at the same time
– Easily solved by using thread-private copies of conflicting

arrays
• 85% of the work in GTC reside in 4 loops over the

number of particles on each MPI process.
• Adding the other loops pushes the amount of

computational work in parallel loops beyond 90%.
• The bigger the loops (problem size), the more efficient

is the calculation (we saw 98% on large simulations).

OpenMP example of loop-level
parallelism

• Simple but powerful OpenMP directives

!$omp parallel do private(psitmp,thetatmp,zetatmp,weight,&
!$omp&rhoi,r,ip,jt, ipjt,wz1,kk,wz0,larmor,rdum,ii,wp1,wp0,&

!$omp& tflr,im,tdum,j00,wt10,wt00,j01,wt11,wt01,ij)
do m=1,mp

psitmp=phase(1,m)

thetatmp=phase(2,m)
zetatmp=phase(3,m)

weight=phase(5,m)
rhoi=phase(6,m)*g_inv

...
enddo

Mixed-model MPI+OpenMP lead to
first ITER-size simulations

• With mixed-model a single MPI process is assigned to
each SMP node on Seaborg
– Large amount of memory per MPI process (32 GB/proc!)
– Had to wait for 64-bit MPI to access it though…

• Allowed size scaling study of turbulent transport in
tokamaks, including ITER size:
– 1 billion particles
– 125 million grid points
– 1,024 processors
– largest GTC run at the time

Interesting benchmark of OpenMP
on IBM SP and SGI Origin 2000

• SGI O2k has really only 2
processors that share local
memory symmetrically.

• The NUMA architecture
performs poorly unless
processor placement is
used.

• The symmetric memory
access for the processors
on the IBM SP node is
ideally adapted to the
mixed-model algorithm.

Seaborg allows GTC to routinely
run on 1000+ processors

Then came the others…

• Newer, bigger, and faster computers continuously
emerge.

• The 2002 record-breaking performance of the Earth
Simulator vector computer took everybody by surprise.

• It prompted a renewed interest in vector processing.
• Cray introduced the X1 vector machine soon after.
• I was invited to participate in a study of modern vector

architectures compared to current superscalar ones such
as the IBM SP.

• The study was lead by Dr Leonid Oliker of the Future
Technologies Group at LBL.

GTC vectorization work

• Started on the single-node NEC SX-6 at ARSC
• Porting GTC was very easy although the first tests on a

single processor gave a very low performance
• Real work starts: profiling, vectorizing, optimizing,

test, and… repeat several times
• Multi-processor optimization done on to the Earth

Simulator and CRAY X1

Vectorization challenge for PIC:
Scatter operation

• The charge deposition step (scatter operation) writes to the
charge accumulation array in a random fashion (particle
positions are random), producing dependencies and memory
conflicts whenever 2 or more particles have a common
neighboring grid point this prevents vectorization

• In 1D, the charge deposition step with linear interpolation looks
like this:
do i=1,nparticles

x = particle_position(i)
ix_grid = int(x)
dx = x – real(ix_grid)
charge(ix_grid) = charge(ix_grid)+q*(1-dx)
charge(ix_grid+1) = charge(ix_grid+1)+q*dx

end do

Indirect addressing!
Potential Conflicts

Avoiding memory dependencies:
The work-vector method (Nishiguchi ‘85)

Example of loop with indirect addressing similar to charge deposition:
DO i=1,np

charge(ix(i))=charge(ix(i)) + q(i)
END DO

Fully vectorizable loop using multiple copies (vector length of 256):
ALLOCATE(charge_tmp(256,ngrid)) Uses 256*ngrid*sizeof(charge_tmp)
DO i=1,np,256 of extra memory! (can be 1GB)

DO j=1,min(256,np-i+1)
charge_tmp(j,ix(i+j-1))=charge_tmp(j,ix(i+j-1)) + q(i+j-1)

END DO
END DO
DO i=1,256

DO ig=1,ngrid
charge(ig)=charge(ig) + charge_tmp(i,igrid)

END DO
END DO

Loop-level multithreading competes
directly with vectorization

• Each Earth Simulator node has 8 vector processors
sharing 16 GBytes of memory, allowing us to use
GTC’s mixed-model MPI+OpenMP.

• However, loop-level work splitting with OpenMP
reduces the number of loop operations, which in turn
degrades vector efficiency Lower performance

• Charge deposition loop with OpenMP requires private
copies of the grid array for each processor on the node.

• Combined with the 256 copies of the same grid array
needed for vectorization, the loop-level OpenMP
requires too much memory.

Cache-less memory access issues
on the SX-6 and ES

• Better memory access is the secret to higher performance
• True for STORING to memory as well as FETCHING from it!

do m=1,mi
psitmp=zion(1,m)
thetatmp=zion(2,m)
zetatmp=zion(3,m)
rhoi=zion(6,m)*smu_inv
r=sqrt(2.0*psitmp)
ip=max(0,min(mpsi,int((r-a0)*delr+0.5)))
jt=max(0,min(mtheta(ip),int(thetatmp*pi2_inv*delt(ip)+0.5)))
ipjt=igrid(ip)+jt
wz1=(zetatmp-zetamin)*delz
…

Duplicate small arrays like “igrid” and “mtheta”: !$duplicate
37% improvement on chargei, but uses even more memory…

Repeatedly accessing the same
memory bank before the bank busy

time is over from the last access
leads to poor memory performance!

Vector performance of main routines
on the Earth Simulator

ORIGINAL CODE BEFORE MODIFICATIONS:

PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK
TIME[sec](%) RATIO V.LEN CONF

--------- --------------- ------ ----- ----- ------
chargei 282.677(54.4) 62.0 0.65 98.1 0.0000
pushi 125.211(24.1) 320.1 67.51 196.8 4.3336
poisson 57.878(11.1) 418.9 94.26 107.2 0.3158

CODE AFTER MODIFICATIONS TO CHARGEI, PUSHI, POISSON:

PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK
TIME[sec](%) RATIO V.LEN CONF

--------- --------------- ------ ----- ----- ------
chargei 89.924(33.3) 1314.3 99.65 248.1 6.5002
pushi 93.877(34.7) 2426.6 99.38 255.9 8.8139
poisson 26.239(9.7) 918.1 99.71 252.7 3.2485

Note: the 2 tests do
not have the same
number of time steps
so the times are
different

Total = 1.412 Gflops per proc

GTC on the CRAY X1/X1E

• Must deal with multi-streaming on top of vectorization
• Same vectorizations apply.
• Easier to prevent vectorization of small inner loops
• Also needs the work-vector method with the same

dimensions of 256 in MSP mode:
– 4 streams x 64 (vector length)
– Uses as much extra memory as the Earth Simulator

• Unvectorized and unstreamed loop in “shifti” slows
down the calculation to a crawl
– 54% of the time spent in that routine according to “pat”
– Was only 11% on the ES

The culprit in shifti

• “Unstreamed” and “unvectorized” loop due to nested if
blocks:

do m=m0,mi
zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zion(3,m)-zetamin
if(zetaright*zetaleft > 0)then

zetaright=zetaright*0.5*pi_inv
zetaright=zetaright-real(floor(zetaright))
msend=msend+1
kzi(msend)=m
if(zetaright < 0.5)then

msendright(1)=msendright(1)+1
iright(msendright(1))=m

else
msendleft(1)=msendleft(1)+1
ileft(msendleft(1))=m

endif
endif

enddo

New loop in shift

!dir$ preferstream
do imm=1,4

!dir$ prefervector
do m=(imm-1)*mi/4+1,imm*mi/4

zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zetamin-zion(3,m)
alpha=pi2*aint(1.0-pi4_inv*zetaleft)
beta=pi2*aint(1.0-pi4_inv*zetaright)
kappa=pi2*aint(1.0+zetaleft*zetaright*pi2sq_inv)
aright=(alpha+zetaleft) - (beta+zetaright) - kappa
aleft=(alpha+zetaleft) - (beta+zetaright) + kappa
if(aright > 0.0)then

msend_r(imm)=msend_r(imm)+1
kzi_r(msend_r(imm),imm)=m

endif
if(aleft < 0.0)then

msend_l(imm)=msend_l(imm)+1
kzi_l(msend_l(imm),imm)=m

endif
enddo

enddo

Did it work?

• Yes, the overall time spent in shifti went from 54% to only 4%!!

• On the Earth Simulator, the compiler can only deal with a single
conditional statement within a loop in order to vectorize that
loop. Solution: split the loop in 2 parts.

• Improved performance on the ES but not as dramatic as on the
X1.

Memory used by the vectorized
version of GTC (per processor)

0 20 40 60 80 100
Number of particles per cell

0

500

1000

1500

2000

M
em

or
y

pe
r

C
PU

 (
M

B
yt

es
)

ES-32p
ES-64p
P3-32p
P3-64p

• For micell=10
memory on the
ES is up to 8
times more than
one the Power 3!

• It gets better as
the number of
particles per cell
increases

Flops/sec for higher
particle resolution

0 20 40 60 80 100
Number of particles per cell

0

20

40

60

80

100

120
Pe

rf
or

m
an

ce
 (

G
fl

op
s)

X1
ES
P4
P3

64-Processor/MSP test runs

High resolution simulations

• The algorithm to “push” the particles is very efficient
on vector machines.

• This allows us to run high resolution simulations using
a large number of particles.

• More particles means
– more phase space resolution (velocity + configuration space)
– lower discrete particle noise/fluctuations
– longer simulations
– higher efficiency on vector computers

• Without using OpenMP, we are back to only 1D
domain decomposition and a max of 64-128 processors

• How to improve concurrency?

New parallel model: Domain
decomposition + particle splitting

• 1D Domain decomposition:
– Several MPI processes can now sit in

a section of the torus
• Particle splitting method

– The particles in a toroidal section are
equally divided between several MPI
processes

• Particles randomly distributed between
processors within a toroidal domain.

• No OpenMP
• Pure MPI version

Processor 2
Processor 3

Processor 0
Processor 1

Pure MPI parallel model ideal
for newest large scale computers

• New large scale computers such as Blue Gene/L and
Cray XT3 allow only message passing for
communication between processors.

• The MPI-only version of GTC has been very successful
on those platforms.

• It achieved the highest performance of 7.2 TFlops on
the Earth Simulator using 4,096 processors.

• Used over 16,000 processors on the Blue Gene/L
computer at IBM Watson.

• Largest GTC production simulation recently carried out
on 4,800 processors of the Cray XT3 at ORNL using
28 billion particles.

Latest benchmark: weak scaling study
with fixed device size

64 128 256 512 1024 2048 4096 8192 16384

Number of processors

10

100

1000

10000

C
om

pu
te

 P
ow

er
 (

m
ill

io
ns

 o
f

pa
rt

ic
le

s)

Phoenix (CRAY X1E)
NEC SX-8 (HLRS)
Earth Simulator(05)
Phoenix (CRAY X1)
Jaguar (CRAY XT3)
Jacquard (opteron+IB)
Thunder (IA64+Quad)
Blue Gene/L (Watson)
Seaborg (IBM SP3)
Seaborg (MPI+OMP)

Compute Power of the Gyrokinetic Toroidal Code
Number of particles (in million) moved 1 step in 1 second

Latest vector optimizations
Not tested on Earth Simulator

S. Ethier, PPPL, Nov. 2005

Conclusions

• Benchmarking and optimizing work never ends
• New platforms with more processors and different

characteristics are continuously being developed.
• To cope with the changes while wanting to achieve top

performance, codes must be flexible and developers must
be willing to modify their codes.

• Secret to high performance (in my opinion…)
– Data access (must feed the processor as fast as possible)
– Fast data access = good data layout
– Minimize communications

• Speed is not a substitute to “right answer”…

	Experiences benchmarking and optimizing GTC on High Performance Computers
	The Gyrokinetic Toroidal Code
	Particle-in-cell (PIC) method
	Charge Deposition for charged rings:4-point average method
	Quasi-2D structure of potential
	GTC mesh and geometry
	Original parallel model in GTC:1D toroidal domain decomposition
	Scaling of original version of GTC
	Then came Seaborg…
	New level of parallelism in GTC:Loop-level
	Why loop-level parallelism?
	OpenMP example of loop-levelparallelism
	Mixed-model MPI+OpenMP lead tofirst ITER-size simulations
	Interesting benchmark of OpenMPon IBM SP and SGI Origin 2000
	Seaborg allows GTC to routinelyrun on 1000+ processors
	Then came the others…
	GTC vectorization work
	Vectorization challenge for PIC:Scatter operation
	Avoiding memory dependencies:The work-vector method (Nishiguchi ‘85)
	Loop-level multithreading competesdirectly with vectorization
	Cache-less memory access issueson the SX-6 and ES
	Vector performance of main routineson the Earth Simulator
	GTC on the CRAY X1/X1E
	The culprit in shifti
	New loop in shift
	Did it work?
	Memory used by the vectorizedversion of GTC (per processor)
	Flops/sec for higherparticle resolution
	High resolution simulations
	New parallel model: Domaindecomposition + particle splitting
	Pure MPI parallel model idealfor newest large scale computers
	Latest benchmark: weak scaling studywith fixed device size
	Conclusions

