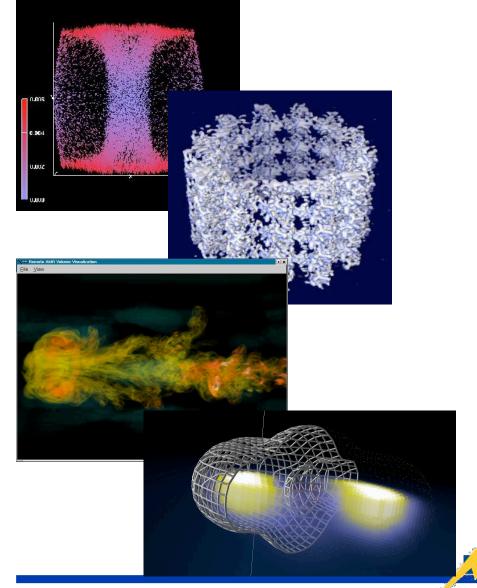
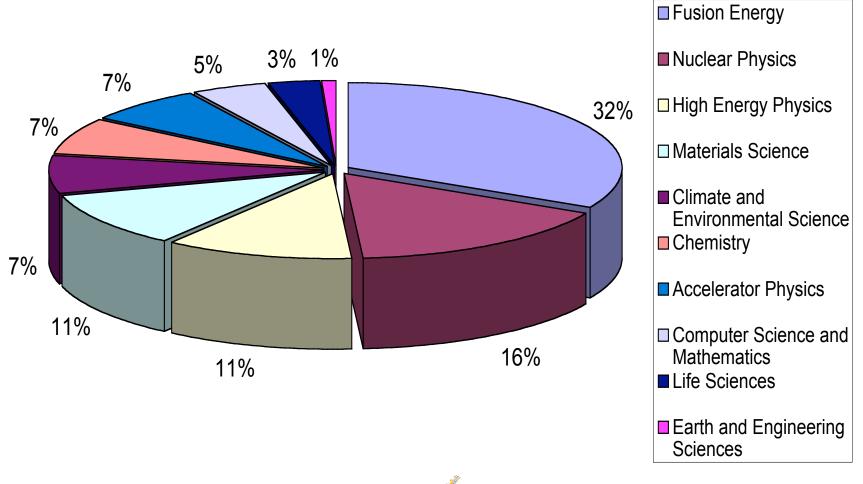


Science Driven System Architectures (and a few words about benchmarking)

John Shalf NERSC Users Group Meeting Princeton Plasma Physics Laboratory June 2006

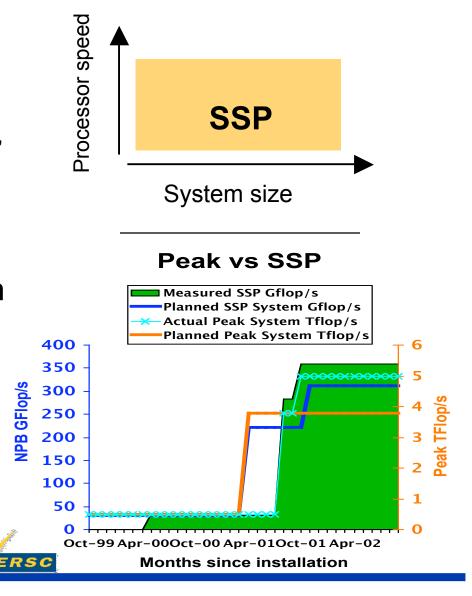

- Overview of the SSP for procurement benchmarks
- Recent Benchmarking Activities
- Workload Characterization
- Wild Ideas


NERSC Mission

- Support large scale computational science that cannot be done elsewhere
- Support wide variety of science and computational methods
- Provide a stable production environment to deliver these services

Benchmarking for NERSC System Procurements

- Require a uniform/scientific metric for system "value" over the lifetime of the system that;
 - Assesses effective/delivered system performance
 - Representative of NERSC workload
 - Takes into account system availability and delivery time
 - Focus on the total value of the system to the DOE science community!
- Full Application based benchmark methodology
 - SSP: Sustained System Performance
 - ESP: Effective System Performance
- Same methodology (SSP/ESP) employed for "validation" of the delivered system
 - Factory testing
 - Acceptance testing
 - Continuing testing through the lifetime of the system to assess impact of all system upgrades



- 7 production applications provide representative subset of NERSC workload
 - Immunity to performance "tweaking"
 - Jobs scaled to match typical/target problem sizes
 - Emphasis on capability jobs
- Uses weighted harmonic mean of job performance
 - add wallclock times together and divide by total flop count
- Total "value" is the area under the SSP performance curve!

SSP v2 Applications

Application	Scientific Discipline	Algorithm or Method	MPI Tasks	System Size	Wallclock Timing (sec)
GTC*	Plasma Physics – (SciDAC)	Particle-in-cell	256	10 ⁷ ions	1682
MADCAP*	Cosmology (SciDAC)	Matrix inversion	484	40000x 40000	903
Milc*	Particle Physics (SciDAC)	Lattice QCD	512	32 ³ x64	1031
NAMD	Biophysics	Molecular dynamics	1024	92224 atoms	379
NWChem	Chemistry	Density functional	256	125 atoms	2367
Paratec*	Material Science	Density functional	128	432 atoms	1386
SEAM*	Climate (SciDAC)	Finite element	1024	30 days	494

- Throughput of system under normal operating conditions (nontrivial)
 - Batch Scheduler efficiency and validation
 - Job Launcher efficiency
 - Effect of job fragmentation on system performance
 - Issues with < full bisection interconnects</p>
 - Even fat-trees suffer from fragmentation issues
 - Job migration overhead (remediation)

- It is difficult to get good coverage
 - Some scientists will not part with "crown jewels"
 - Hopelessly un-portable codes
 - Huge time investment for porting and packaging
 - Tuning requirements for novel/unique architectures
 - Difficult for vendors to find test systems of appropriate scale
 - Must test applications at reasonable/native scale
 - Rotation of benchmarks to prevent "performance islands"
 - Rotation of benchmarks to follow workload trends
 - SSP applications will have turn-over as science evolves
 - Vendor "non-compliance" during bidding process
 - Motivates us to simplify benchmarking procedures and methods
- Perhaps we need a persistent effort to manage the SSP?

Emerging Concerns (apps not in SSP/ESP)

- Some good science doesn't scale to thousands of processors
 - AMR
 - Load balancing
 - Locality constraints for prolongation and restriction
 - Pointer chasing (and lots of it!) (Little's Law limitations)
 - Sparse Matrix / SuperLU
 - Domain decomp limits strong scaling efficiency
- Emerging issues with existing applications
 - Implicit Methods
 - Vector inner product required by Krylov subspace algorithms is hampered by latency-bound fast global reductions at massive parallelism
 - Climate Models
 - When science that depends on parameter studies and ensemble runs, capacity and capability are intimately linked! (capacity vs. capability is a bogus metric)
- Growth in experimental and sensor data processing requires more attention to I/O performance and global filesystems

Science Driven System Architecture (SDSA)

- **Stewardship of NERSC SSP Benchmark suite** (Harvey Wasserman, Lenny Oliker)
 - Workload characterization (benchmarks only sensible in context of the workload they are intended to model:
 - Selection and packaging of benchmarks + collaboration with other govt. agencies
 - Benchmarking and data collection on available systems (no surprises)
- Development of New Benchmark Areas (Mike Welcome, Hongzhang Shan)
 - I/O Benchmarking
 - AMR Benchmarks
- **Performance Modeling** (Erich Strohmaier, Andrew Canning)
 - Develop microbenchmarks that act as proxies to full application code
 - Develop performance predictive performance models that enable us to predict performance of systems that do not yet exist
 - Use predictive performance models to answer "what-if" architectural questions.
- Algorithm Tracking and Computer Architecture Evaluation (Lin-Wang Wang, Esmond Ng)
 - What are current resource requirements for current algorithms and how will they affect future computer system architectures?
 - How will future system architecture choices affect the development of future numerical algorithms?
- Vendor Engagement (everyone)
 - Vendor development cycle 18-24 months!
 - Provide detailed performance analysis & discussion w/vendors to effect changes early in the development cycle (when it really matters)!
 - Bring feedback from vendors back to application groups (vendor code tuning assistance)

Bassi SSP on Power5+ showed only 8.27% performance degradation when run using dual-core mode.

Test Case		SSP				Geometric Mean	SSP
	FT Time	MG Time	CAM	GTC	PARATEC	SSP Time	% Speedup
Power5+ "Sparse"							
8 procs, 8 cores	50.450	13.140	2779.224	1365.530	4962.160	416.170	
(one core per processor)							
Power5+ "Dense"							
4 procs, 8 cores	56.820	14.520	2841.340	1485.538	5334.200	450.598	-8.27%
(2 cores per processor)							
Percent							
Speedup	-12.63%	-10.50%	-2.24%	-8.79%	-7.50%		

Test Case	Memtest Triad BW	MPITest Max Latency	MPITest Min BW	MPITest Nat. Ord. Ring BW	MPITest Rnd. Ord. Ring BW
Power5+ "Sparse" 8 procs, 8 cores	10222	0.002056	5032.15837	3187.899174	3184.094637
(one core per processor)		0.002000			
Power5+ "Dense" 4 procs, 8 cores (2 cores per processor)	6693	0.001937	5405.03093	2750.264652	2514.449009
Percent Speedup	-34.52%	5.79%	7.41%	-13.73%	-21.03%

However, AMD Opteron X2 shows >50% degradation for many NAS benchmarks compared to single-core???

Test	Unpacked	Packed	Percent
BT	974	622	63.86%
CG	368	272	73.91%
FT	823	520	63.18%
LU	1072	643	59.98%
MG	1411	960	68.04%
SP	576	374	64.93%
Average			62.46%

- 100% would be perfect speedup
- 50% means each core runs 50% as fast as single core case
- <50% means performance degrades **more** than memory bandwidth alone can explain!!!

	—	
	Function	Rate (MB/s)
1task	Copy:	3888.9
	Scale:	3915.4
	Add:	3836.1
	Triad:	3831.8
packed	Copy:	2002.9
	Scale:	2034.9
	Add:	1989.7
	Triad:	1946.0
Difference	Copy:	51.5%
	Scale:	52.0%
	Add:	51.9%
	Triad:	50.8%

- CPU clock scaling bonanza has ended
 - Heat density
 - New physics below 90nm (*departure from bulk material properties*)
- Yet, by end of decade mission critical applications expected to have 100X computational demands of current levels (*PITAC Report, Feb 1999*)
- The path forward for high end computing is increasingly reliant on massive parallelism
 - Petascale platforms will likely have hundreds of thousands of processors
 - System costs and performance may soon be dominated by interconnect
- What kind of an interconnect is required for a >100k processor system?
 - What topological requirements? (fully connected, mesh)
 - Bandwidth/Latency characteristics?
 - Specialized support for collective communications?

Questions

(How do we determine appropriate interconnect requirements?)

- Topology: *will the apps inform us what kind of topology to use?*
 - Crossbars: Not scalable
 - Fat-Trees: Cost scales superlinearly with number of processors
 - Lower Degree Interconnects: (*n-Dim Mesh, Torus, Hypercube, Cayley*)
 - Costs scale linearly with number of processors
 - Problems with application mapping/scheduling fault tolerance
- Bandwidth/Latency/Overhead
 - Which is most important? *(trick question: they are intimately connected)*
 - Requirements for a "balanced" machine? (eg. performance is not dominated by communication costs)
- Collectives
 - How important/what type?
 - Do they deserve a dedicated interconnect?
 - Should we put floating point hardware into the NIC?

- Identify candidate set of "Ultrascale Applications" that span scientific disciplines
 - Applications demanding enough to require Ultrascale computing resources
 - Applications that are capable of scaling up to hundreds of thousands of processors
 - Not every application is "Ultrascale!" (not all good science is Ultrascale)
- Find communication profiling methodology that is
 - Scalable: Need to be able to run for a long time with many processors.
 Traces are too large
 - Non-invasive: Some of these codes are large and can be difficult to instrument even using automated tools
 - Low-impact on performance: *Full scale apps... not proxies!*

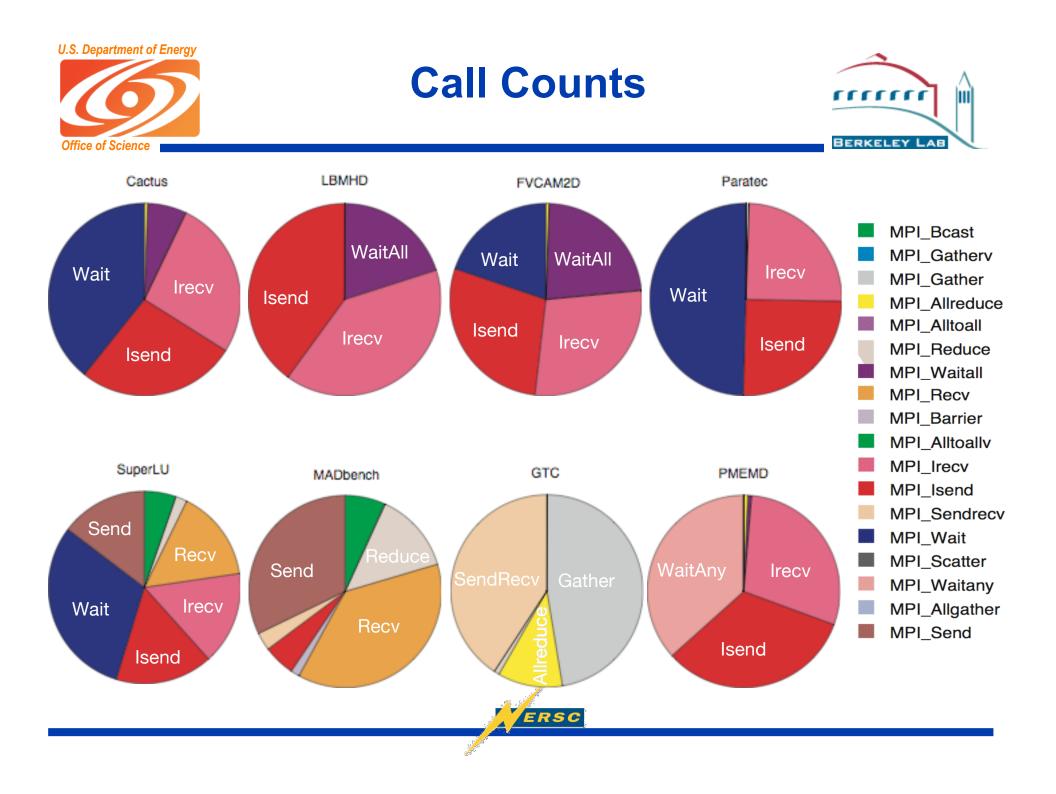
IPM (the "hammer")

Developed by David Skinner, NERSC

ERSC

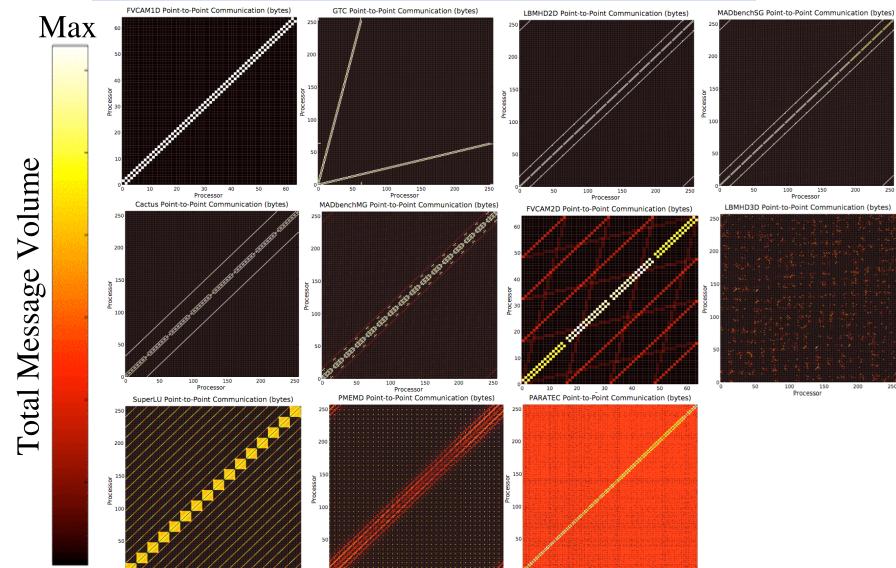
Integrated Performance Monitoring

- portable, lightweight, scalable profiling
- fast hash method
- profiles MPI topology
- profiles code regions
- open source

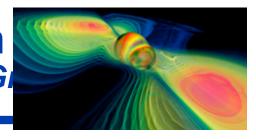

```
MPI_Pcontrol(1,"W");
   ...code...
MPI_Pcontrol(-1,"W");
```

######################################	ode041 256 ta	asks ES,	/ESOS
# <mpi></mpi>	<user></user>	<wall></wall>	> (sec)
# 171.67	352.16	393.80	• •
#			
#######################################	###############	########	########
# W			
# <mpi></mpi>	<user></user>	<wall></wall>	> (sec)
# 36.40	198.00	198.30	5
#			
# call	[time]	%mpi	%wall
<pre># MPI_Reduce</pre>	2.395e+01	65.8	6.1
<pre># MPI_Recv</pre>	9.625e+00	26.4	2.4
<pre># MPI_Send</pre>	2.708e+00	7.4	0.7
<pre># MPI_Testall</pre>	7.310e-02	0.2	0.0
<pre># MPI_Isend</pre>	2.597e-02	0.1	0.0
#######################################	#######################################	########	########
<u>i</u>			

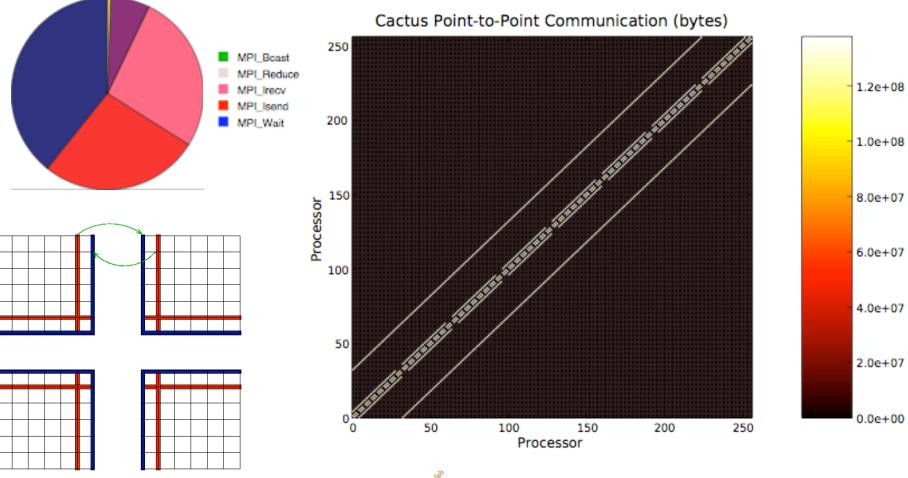
NAME	Discipline	Problem/Method	Structure
MADCAP	Cosmology	CMB Analysis	Dense Matrix
FVCAM	Climate Modeling	AGCM	3D Grid
CACTUS	Astrophysics	General Relativity	3D Grid
LBMHD	Plasma Physics	MHD	2D/3D Lattice
GTC	Magnetic Fusion	Vlasov-Poisson	Particle in Cell
PARATEC	Material Science	DFT	Fourier/Grid
SuperLU	Multi-Discipline	LU Factorization	Sparse Matrix
PMEMD	Life Sciences	Molecular Dynamics	Particle



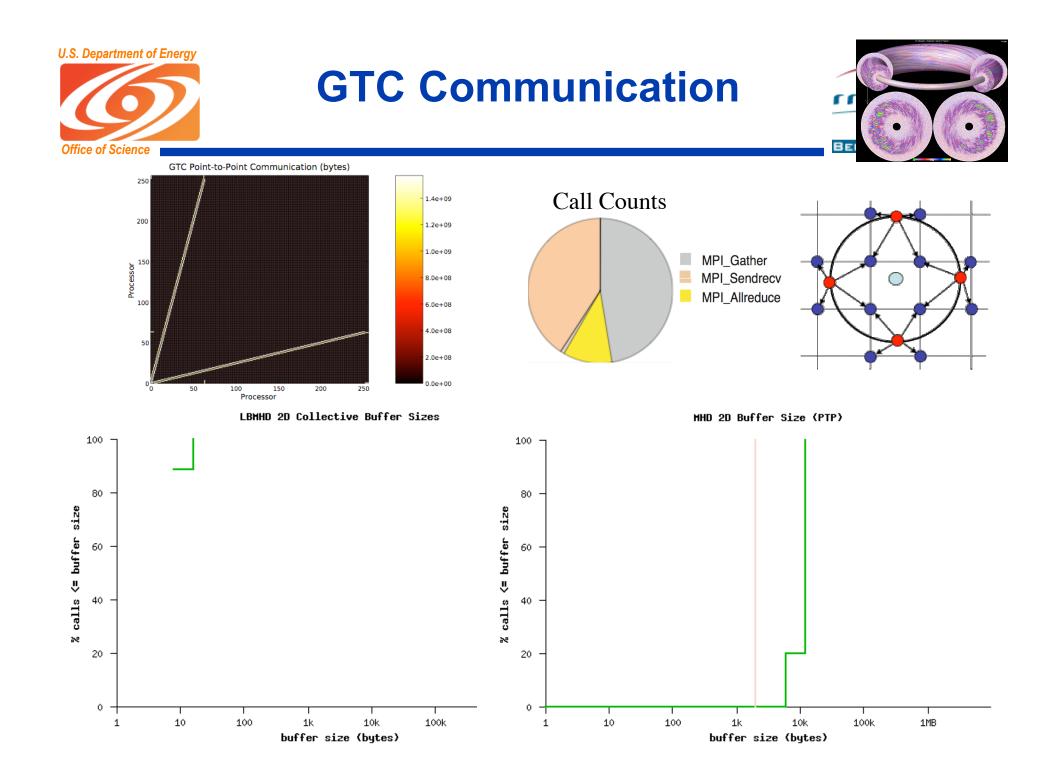
P2P Topology Overview



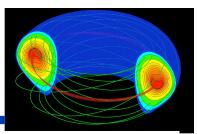
Processor

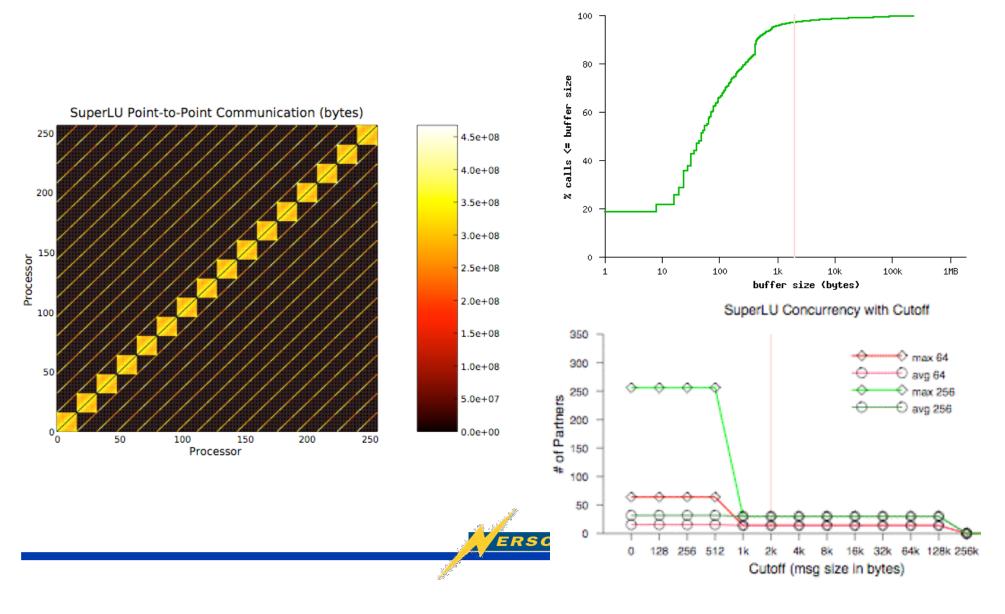

100 150 Processor

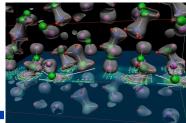
100 150 Processor

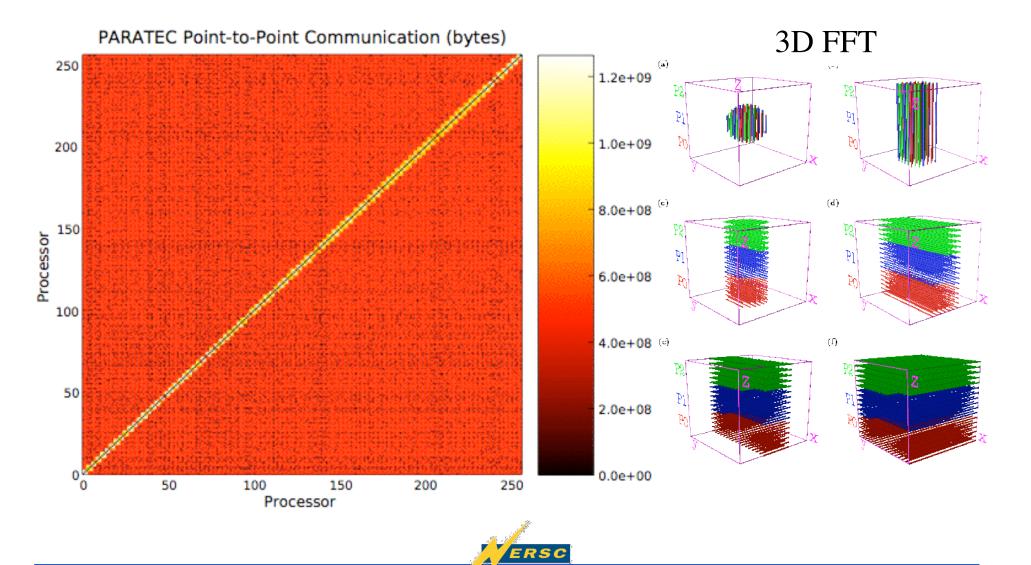


Cactus

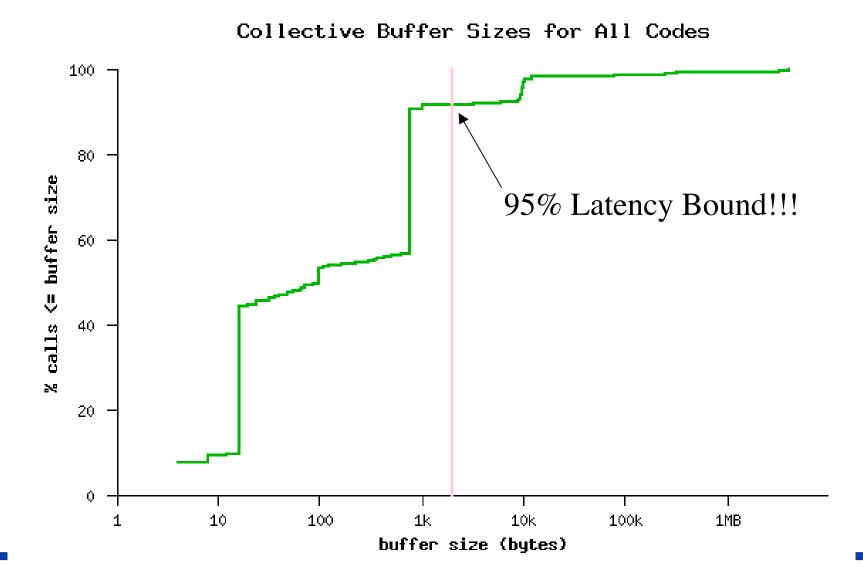


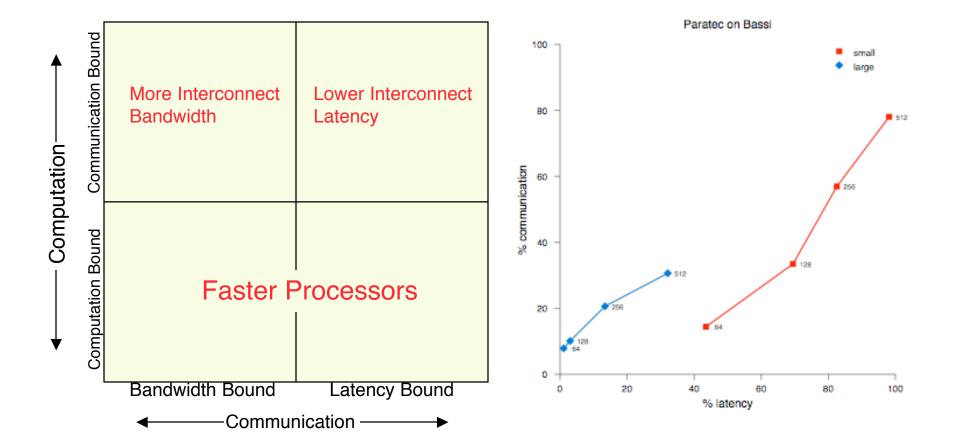



SuperLU Communication



SuperLU Buffer Size (PTP)





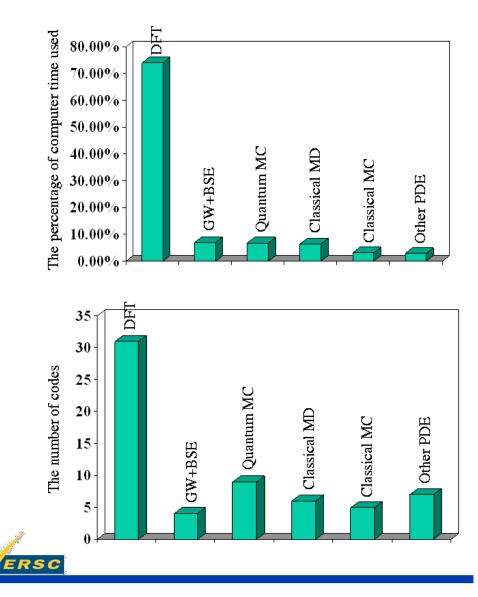
Latency/Balance Diagrams

Revisiting Original Questions

- Topology
 - Most codes require far less than full connectivity
 - PARATEC is the only code requiring full connectivity
 - Many require low degree (<12 neighbors)
 - Codes with low topological degree of communication not necessarily isomorphic to a mesh!
 - Non-isotropic communication pattern
 - Non-uniform requirements
- Bandwidth/Delay/Overhead requirements
 - Scalable codes primarily bandwidth-bound messages
 - Average message sizes several Kbytes
- Collectives
 - Most payloads less than 1k (8-100 bytes!)
 - Well below the bandwidth delay product
 - Primarily latency-bound (requires different kind of interconnect)
 - Math operations limited primarily to reductions involving sum, max, and min operations.
 - Deserves a dedicated network (significantly different reqs.)

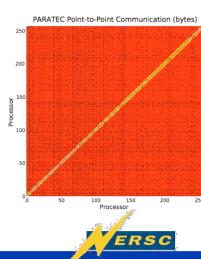
Algorithm Tracking

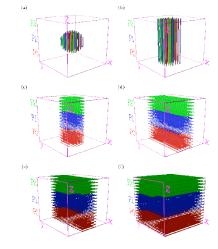
- Can't track an algorithm until you define what constitutes an algorithm that is worth tracking
 - Which algorithms or libraries are important?
 - Workload analysis precedes drill-down into algorithm


U.S. Department of Energy

Materials Science Workload

ank	N-user	HPC(KH)	Code name	Narrative
1	23	704.5	VASP	Vienna, planewave DFT
2	3	632.4	LSMS	ORNL, local mutiple scattering DFT
3	4	216.0	PEscan	LBNL, planewave Folded Spectrum Method
4	3	186.0	Scarlet	Berkeley, quantum transport, atomic basis
5	2	151.0	ALCMD	Classical MD
6	6	142.5	Paratec	Berkeley, planewave DFT
7	2	125.0	Qbox	LLNL, massively parallel planewave DFT
8	3	124.0	CMAT	NREL, Coulomb calc, and CI
9	6	116.5	PWSCF	Planewave DFT
10	2	109.0	FLAPW	NW Univ, FLAPW
11	4	89.00	GW	Berkeley, GW
12	2	84.0	PEtot	LBNL, planewave DFT
13	4	79.0	SIESTA	Spain, local basis/orbital DFT
14	3	78.75	TBMD	Tight-binding Molecular Dynamics
15	2	78.75	BO-LSD-MD	Planewave DFT MD
16	1	70.0	CASINO	Quantum MC
17	3	59.0	DLPOLY	Classical MD
18	4	59.0 55.5	NWchem	NWchem DFT, planeway and local basis
18	4	50.0	CHAMP	
20	2	50.0 43.75		Quantum Monte Carlo
_			Multigrid	North Carolina, real space DFT
21	1	43.75	XqmmmX	QM/MM, PW for QM, Amber for MM
22	1	40.0	SSEqmc	Quamtum MC for lattice spin
23	3	37.5	Parsec	Minnesota, real space DFT
24	3	37.5	RGWBS	Minnesota, G-space TDLDA
25	1	35.0	LMTO-SIC	LMTO, DFT, Self-interaction correction
26	1	35.0	Psi-Mag	Classical spin-MC
27	1	35.0	SGF	Surface green's function
28	1	35.0	Moldy	Force field classical MC
29	1	35.0	OLCAO	LCAO TB like DFT
30	3	33.0	NAMD	Classical force field MD
31	3	33.0	BSE	Berkeley, Bethe-Salpeter Eq.
32	2	30.0	FDTDn	Genetic Algorithm, classical el-mag, energy
33	1	30.0	Flair	FLAPW LDA
34	1	30.0	CF-Monte-Carlo	Quatum Monte Carlo for model H
35	2	30.0	Abinit	Planewave DFT
36	1	28.0	Dmol3	Atomic orbital DFT
37	1	28.0	FLMTO	LMTO DFT
38	1	26.0	Polycrys	Plastic Deformation, grain boundary
39	1	25.0	LAMMPS	Particle method molecular dynamics
40	1	25.0	PWDFT	Planewave DFT
41	1	25.0	QMC-DCA	Quantum MC and dynamic cluster
42	1	25.0	SPF	Classical spin-phonon-Fermion MC
43	1	20.0	Qdot	Quantum MC for 2D electron
44	1	20.0	FEFF	Multi-scattering Green's func. electronic st
45	1	20.0	becmw	Ordinary Differential Equation.
46	1	20.0	Qmhubbard	Quantum Mechanics, hubbard model
47	1	15.0	Freeparix	Special algorithm Quantum MC
48	1	14.0	TransG98	Green's func. transport, Gaussian basis
49	1	12.5	AndyS	George Tech. Planewave DFT
50	1	12.5	CL-GCMD	Classical MD, complex liquid
51	1	12.5	Hollicita	2D vertices PDE
52	1	12.0	Mol-dyn	London Eq. MD, particle method
53	1	10.0	Moment	
	1	10.0	TMM	Maxwell Eq, FFT, photonics Transfer matrix for Maxwell Fa, photonic
54	1	10.0	BEST	Transfer matrix for Maxwell Eq, photonic Planewave DFT
55	1			
56	_		AMber	Classical force field MD
57	1	8.0	MC	Classical MC for vortices
58	1	6.0	ARPEsmpi	Multiple scattering photoemission
59	1	5.0	AFQMC	William Mary, Quantum Monte Carlo
60	1	5.0	WIEN2K	Vienna, FLAPW
61	1	3.75	Hartree	Real-space Hubbard Model, FH, LDA
62	1	2.0	Ginger	Classical particle
otal		4100.0		





Materials Science Workload

BERKELEY LAB

- Materials Science Workload
 - Lin-Wang Wang ERCAP analysis
 - PARATEC is a good proxy for MatSci apps.
 - A massively parallel future (Petascale) may push us to methods that exhibit more Spatial Locality in their communication patterns
 - Are real-space methods a good replacement, or is it just going to waste more CPU cycles to get the same quality answer?

