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Lattice QCD

Quantum chromodynamics(QCD) de-
scribes Hadrons and their strong inter-
actions. Hadrons consist of quarks held
together by gluons.

Lattice QCD is QCD on a 4-dimensional
(space-time) lattice. Allows numerical
simulation of the functional integrals which
define this quantum field theory, and
non-perturbative QCD calculations.

Physics — properties of hadrons (masses,
etc.), hadronic matrix elements (HEP),
hadronic matter at finite temperature
and/or densities (RHIC, early universe,
neutron stars).
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Computational Methods

• Functional integral is mapped to the
partition function for a classical sys-
tem. Molecular-dynamics methods
are used to calculate the observables
for this classical system.

• The equations of motion for the fields
defined on the sites and links of the
lattice are integrated numerically us-
ing a modified Verlet(leapfrog) method.

• At each update we need to invert the
sparse Dirac operator (matrix) oper-
ating on the vector of quark fields.
We use the conjugate gradient algo-
rithm to solve this system of (typi-
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cally ∼ 104—107) linear equations.

• On MPP systems we parallelize by
dividing the lattice into N pieces,
each having the same number of con-
tiguous sites and the same shape. In
the MPI implementation 1 piece is
given to each of N MPI tasks. This
leads to 100% load balancing. The
communications are homogeneous send-
receive operations between nearest neigh-
bour tasks on the lattice. In addition
there are 2 global sums per conjugate
gradient iteration.

• Communications can be overlapped
with computations when the machine
supports this.

• Our task codes are in fortran.
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Benchmarks of Production Codes

These are benchmarks for produc-
tion codes on Seaborg, for lattice sizes
used in production running. Note that
here we maintain a fixed lattice size while
we vary the number of processors used,
so that as the number of processors in-
creases, the size of the sublattice on each
node decreases.

This contrasts with what has been
presented in the past by other groups
who have presented benchmarks where
they assign a fixed size (and shape) sub-
lattice to each processor, so that the
size of the whole lattice increases lin-
early with the number of processors.
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Figure 1: Performance of Nt = 8 QCD
+ 4-fermion code on Seaborg
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Figure 2: Per processor performance
of Nt = 8 QCD + 4-fermion code on
Seaborg
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Lattice QCD with irrelevant chiral 4-fermion
interactions at finite temperature

One difficulty with the standard for-
mulations of lattice QCD is that the
Dirac operator becomes singular at zero
quark mass.

If a is the lattice spacing, the dis-
cretization error is O(a2). We add to
the standard action a 4-fermion inter-
action which preserves its symmetries,
contributesO(a2), and renders the Dirac
operator non-singular at zero quark mass.

We are currently using this action
to simulate 2-flavour lattice QCD with
massless quarks at finite temperatures
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to determine the nature of the transi-
tion from hadronic matter to a quark
gluon plasma, and measure the critical
exponents at this transition.

The measurement of hadronic prop-
erties (masses, decay rates...) on the
lattice with standard formulations is lim-
ited by the small masses of the u and d
quarks. Simulations are typically per-
formed with unphysically large quark
masses and the results extrapolated to
the physical quark masses. We plan to
apply our methods which are unaffected
by the smallness of quark masses to such
measurements, using the physical u and
d quark masses.
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Figure 3: The chiral order parameter
〈ψ̄ψ〉, and the Wilson Line (Polyakov
Loop) as functions of β = 6/g2.
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Lattice QCD at finite densities

• QCD at finite baryon/quark-number,
isospin(I3) and/or strangeness den-
sity (nuclear matter).

• QCD at finite temperature and den-
sity.

• QCD at finite baryon-number chem-
ical potential, has a complex fermion
determinant. Standard simulation meth-
ods based on importance sampling
fail.

•We study QCD at finite isospin den-
sity, and 2-color QCD at finite quark-
number density, which have real pos-
itive fermion determinants so stan-
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dard methods work.

• Lattice QCD with a chemical poten-
tial µI for isospin(I3) has a mean-
field second order phase transition at
µI = mπ to a superfluid state with a
charged pion condensate and a mass-
less Goldstone pion.

•We measure the µI dependence of
the finite temperature transition at
small µI , where the µI and µq de-
pendence should be identical. This
gives us access to RHIC physics. At
large µI and high temperature we
observe the pion condensate evapo-
rate at a first order transition.

12



Figure 4: The charged pion condensate
as a function of µI .
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Figure 5: The transition β = 6/g2 as a
function of µI .
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Computing Requirements and Observations.

• To make more precise predictions of
the properties of hadrons and of hadronic
matter in extreme environments, re-
quires larger lattices, smaller lattice
spacings, quark masses closer to the
physical u and d quark masses and
higher statistics.

• It has been estimated that the next
stage of Lattice QCD calculations will
require computers with sustained per-
formance in the multi-teraflop range.
To perform the ultimate Lattice QCD
simulations will probably need petaflop
computing.
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• Seaborg does not readily accommo-
date fine grain parallelism. This re-
stricts the number of processors which
can be used effectively on small lat-
tices. Optimally, if we use the MPI
paradigm, we would need a computer
which can efficiently handle codes where
each task performs only ∼ 100–1000
floating point operations betweenMPI
calls.

• Although we have managed to par-
allelize serial codes to make use of
the SMP capabilities of the individ-
ual nodes, we have had little success
with hybrid execution of our MPI
codes.

16



• Global reduction operations appear
to be implemented relatively ineffi-
ciently on the IBM SP’s.

• One positive aspect of our codes is
that they spend most of their time in
a single subroutine — the conjugate
gradient inversion routine (typically
95–100% in production), which in its
simplest serial form is only ∼ 100
fortran statements! This simplifies
optimization.
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