
Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

T3E Individual Node Optimization

Michael Stewart, SGI/Cray, 4/9/98

• Introduction

• T3E Processor

• T3E Local Memory

• Cache Structure

• Optimizing Codes for Cache Usage

• Loop Unrolling

• Other Useful Optimization Options

• References

1

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Introduction

• Primary topic will be single processor optimization

 • Most codes on the T3E are dominated by computation

 • Processor interconnect specifically designed for high

 performance codes, unlike the T3E processor

• More detailed information available on the web (see References)

• Fortran oriented, but I will give C compiler flag equivalents.

2

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

T3E Processor

• Commodity DEC Alpha EV5 RISC microprocessor, 1 FP add and 1 FP

 multiply per CP (clock period)

 • mcurie: 450 MHz clock, 900 MFlops peak performance

 • pierre: 300 MHz clock, 600 MFlops peak performance

• All puts and gets between processors are cache coherent

• Principle differences between T3E and traditional Cray PVP’s

 (Parallel vector processors):

 • T3E strictly scalar, no vector registers

 • T3E has a hierarchical memory structure with several layers

 of caching

 • T3E optimization more data dependent

3

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

T3E Local Memory

• Hierarchical memory with two "and a half" levels of data caching

• On chip primary and secondary cache plus Cray provided "data

 streaming"

• Memory access time ranges from 2 125 CP (clock periods)

4

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Data Flow on a T3E Node

DRAM Local Memory

SB Stream Buffers

SCACHE Secondary Cache

DCACHE Primary Cache

ICACHE Instruction Cache

MAF Missed Address File

WB Write Buffer

E0/E1 Integer Functional

 Units

FA/FM FP Functional Units

5

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Data Flow on the EV5 Processor

6

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Primary Cache ("Data Cache")

• Direct Mapped

 • Each memory location is mapped to a specific cache line

 • Many to one mapping

• Basic unit is 4 64 bit word line

• Total size 8 KBytes (256 lines)

• Latency 2 CP per load

• Bandwidth 2 words per CP

7

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Secondary Cache

• 3 way set associative

 • Each memory location is associated with 3 different cache

 lines

 • One of the 3 lines is chosen at random when data is loaded

 into cache

• Basic unit 8 64 bit word line

• Size 96 (3x32) KBytes, 3x512 lines

• Latency 8 CP per load

• Band width 2 words per CP

8

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Stream Buffers

• Prefetch secondary cache lines into buffers

• Streaming begins when there are two consecutive secondary

 cache line misses

• Can have up to 6 streams active

• Latency 24 CP per load

• Bandwidth .36 word per CP

9

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Local Memory

• 256 MBytes (32 MWords) per processor on mcurie

• 128 MBytes (16 MWords) per processor on pierre

• Latency 85/125 CP per load (page hit/miss)

• Band Width .08/.06 word per CP

10

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

11

Optimizing Code for Cache Usage (1)

• Increase the amount of time data are used while in cache by

 maximizing loop invariant references in innermost loop

 • C and D are reloaded with each iteration of the inner loop:

 DO I=1,ILIM
 DO J=1,JLIM
 DO K=1,KLIM
 A(I,J,K)=B(I,J,K)+C(J,K)+D(K,J)
 ENDDO
 ENDDO
 ENDDo

 • C and D are now loop invariant in the innermost loop:

 DO K=1,KLIM
 DO J=1,JLIM
 DO I=1,ILIM
 A(I,J,K)=B(I,J,K)+C(J,K)+D(K,J)
 ENDDO
 ENDDO
 ENDDO

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Optimizing Code for Cache Usage (2)

• Reduce cache conflict by "padding arrays"

 Cache conflict between B and C:

 COMMON /AAA/ A(1024), B(1024), C(1024)

 DO I=1,1024
 A(I) = B(I) + C(I)
 ENDDO

 No cache conflict:

 COMMON /AAA/ A(1024), B(1024), PAD(4), C(1024)
!DIR$ CACHE_ALIGN /AAA/

• a pad[n] flag to f90 automatically pads arrays but violates

 Fortran addressing conventions

12

Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Loop Unrolling

• Increase the amount of work done in a single iteration of a do

 loop to reduce loop overhead and make best use of the T3E’s

 segmented functional units by "pipelining" operands.

 DO I = 1, iter
 T = T + T
 ENDDO

 Unrolled:

 DO I = 1, iter/4
 T1 = T1 + T1
 T2 = T2 + T2
 T3 = T3 + T3
 T4 = T4 + T4
 ENDDO

 T = T1+T2+T3+T4

13

