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Introduction

• Primary topic will be single processor optimization

  • Most codes on the T3E are dominated by computation

  • Processor interconnect specifically designed for high
    
    performance codes, unlike the T3E processor

• More detailed information available on the web (see References)

• Fortran oriented, but I will give C compiler flag equivalents.
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T3E Processor

• Commodity DEC Alpha EV5 RISC microprocessor, 1 FP add and 1 FP

  multiply per CP (clock period) 

  • mcurie: 450 MHz clock, 900 MFlops peak performance

  • pierre: 300 MHz clock, 600 MFlops peak performance

• All puts and gets between processors are cache coherent

• Principle differences between T3E and traditional Cray PVP’s

  (Parallel vector processors):

  • T3E strictly scalar, no vector registers

  • T3E has a hierarchical memory structure with several layers
    
    of caching

  • T3E optimization more data dependent
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T3E Local Memory

• Hierarchical memory with two "and a half" levels of data caching

• On chip primary and secondary cache plus Cray provided "data
  
  streaming"

• Memory access time ranges from 2 125 CP (clock periods)
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Data Flow on a T3E Node

DRAM  Local Memory

SB  Stream Buffers

SCACHE  Secondary Cache

DCACHE  Primary Cache

ICACHE  Instruction Cache

MAF  Missed Address File

WB  Write Buffer

E0/E1  Integer Functional

  Units

FA/FM  FP Functional Units
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Data Flow on the EV5 Processor
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Primary Cache ("Data Cache")

• Direct Mapped

  • Each memory location is mapped to a specific cache line

  • Many to one mapping

• Basic unit is 4 64 bit word line

• Total size 8 KBytes (256 lines)

• Latency  2 CP per load

• Bandwidth  2 words per CP
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Secondary Cache

• 3 way set associative

  • Each memory location is associated with 3 different cache 

    lines

  • One of the 3 lines is chosen at random when data is loaded

    into cache

• Basic unit 8 64 bit word line

• Size 96 (3x32) KBytes, 3x512 lines

• Latency  8 CP per load

• Band width  2 words per CP
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Stream Buffers

• Prefetch secondary cache lines into buffers

• Streaming begins when there are two consecutive secondary
 
  cache line misses

• Can have up to 6 streams active

• Latency  24 CP per load

• Bandwidth  .36 word per CP
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Local Memory

• 256 MBytes (32 MWords) per processor on mcurie

• 128 MBytes (16 MWords) per processor on pierre

• Latency  85/125 CP per load (page hit/miss)

• Band Width  .08/.06 word per CP
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Optimizing Code for Cache Usage (1)

• Increase the amount of time data are used while in cache by

  maximizing loop invariant references in innermost loop

  • C and D are reloaded with each iteration of the inner loop:

      DO I=1,ILIM
        DO J=1,JLIM
          DO K=1,KLIM
            A(I,J,K)=B(I,J,K)+C(J,K)+D(K,J)
          ENDDO
        ENDDO
      ENDDo

  • C and D are now loop invariant in the innermost loop:

      DO K=1,KLIM
        DO J=1,JLIM
          DO I=1,ILIM
            A(I,J,K)=B(I,J,K)+C(J,K)+D(K,J)
          ENDDO
        ENDDO
      ENDDO
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Optimizing Code for Cache Usage (2)

• Reduce cache conflict by "padding arrays"

  Cache conflict between B and C:

      COMMON /AAA/ A(1024), B(1024), C(1024)

      DO I=1,1024
        A(I) = B(I) + C(I)
      ENDDO

   No cache conflict:

      COMMON /AAA/ A(1024), B(1024), PAD(4), C(1024)
!DIR$ CACHE_ALIGN /AAA/

• a pad[n] flag to f90 automatically pads arrays but violates

  Fortran addressing conventions

12



Laboratory Directed Research & Development Page

National Energy Research Scientific Computing Center

Loop Unrolling

• Increase the amount of work done in a single iteration of a do

  loop to reduce loop overhead and make best use of the T3E’s

  segmented functional units by "pipelining" operands.

      DO I = 1, iter
        T = T + T
      ENDDO

  Unrolled:

      DO I = 1, iter/4
        T1 = T1 + T1
        T2 = T2 + T2
        T3 = T3 + T3
        T4 = T4 + T4
      ENDDO

      T = T1+T2+T3+T4
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