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Talk Outline

o Multigrid

e Prometheus
e PETSc

o T3E



Motivation

e Motivation: Large Scale Implicit Finite Element Method (FEM)
Problems on Unstructured Meshes

e Problem: Solve sparse A in Az = b for x
e Direct Methods (LU factorization): ~ O(n?) for FEM matrices
e Iterative methods: Potentially O(n) in time and space.

e Solution: Multilevel methods = multigrid



Multigrid Basics

http://HTTP.CS.Berkeley. EDU/ demmel /¢s267 /lecture25/lecture25.html

Smoothers - Simple Matrix Splitting
Az =b= (M —-K)z =b
Mx=Kzx+b
t=M"'Ke+M'b
Gpyl — M 'Ka, +M™'b
Tpp1 — Smooth (A, (b — Aiy))

Multiple Grids - Multiple “Scales of Resolution”

1 1 1
3 2 1
P( ): 9 by 9 grid of points P( ): 5 by 5 grid of points P( ): 3 by 3 grid of points
7 by 7 grid of unknowns 3 by 3 grid of unknowns 1 by 1 grid of unknowns
Points labeled 2 are Points labeled 1 are
part of next coarser grid part of next coarser grid

Figure 1: Multigrid coarse vertex set selection on structured meshes



Restriction R and Interpolation I Operators

Tpy — Ry
e.g. R(,)=[0 0 0 0 ... 1/2 1 1/2 ...]
I=R"

Galerkin Coarse Grid Operators

A1 = RAR"

Multigrid Algorithm

r = MultiGrid(A,b)
if A.IsTop()
return A7 - b
else

T < Smooth(A,b)
r<—b—A-zx

d + MultiGrid(RAR" R - 1)
t<+—z+R"-d

r<—b—A-zx

d < Smooth(A,+)
return @ + d

endi f

end



Algebraic MG
e Algebraic Architecture - Input Fine mesh. 4;1; = RA;R".
e Algebraic Coarsening - make strongly connected cliques.

e Algebraic Interpolation operators (RT)— minimize energy of coarse
erids, and maintain compact support.



Prometheus - Multigrid Solver for Unstructured Grids

e Motivation: Large Scale Implicit Finite
Element Problems on Unstructured Meshes

e Classical Multigrid (Geometric),
with Algebraic Architecture

— Guillard, 1992
— Chan and Smith, 1994

e Evenly coarsen grid -
Maximal Independent Sets

e Geometric remeshing of node set -
Delaunay tessellation

e Finite element (FE) shape functions for
interpolation operators

e Coarse grid matrices formed algebraically -

Galerkin MG
Aiy1 = RAR"

e http://www.mes.anl.gov/CCST /research /discipline /index.html
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Figure 2: Sample Input Grid

Figure 3: Sample Coarse Grids
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Prometheus - parallel MG solver for FE matrices



Performance Results - Problem

13882 Vertex 3D FE mesh - Deformed Shape

e Parameterized mesh - 15,000 to 3,940,000 dof problems used
e Hard sphere covered by soft (E, = 107*E},) material

e Poisson ratio .49 for soft material

e About 15,000 dof per processor

e Linear elasticity
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Prometheus Performance Results
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Inclusion Sphere Times (~15K per processor)
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Figure 4: Parameterized Included Sphere Problem - Cray T3E
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Time(1) / Time(p) * (N(1) * p) / N(p)
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Inclusion Sphere Speedup (~15K per processor)
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Figure 5: Parameterized Included Sphere Problem - Cray T3E
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PETSc the Portable, Extensible Toolkit for Scientific
Computation

e Numerical Libraries.
e Parallel Development Support.
e Object Oriented Library Design - implemented in ANSI C

e http://www.mcs.anl.gov /petsc
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