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Motivation

• Part of the Numerical Tokamak Turbulence Project (NTTP), 
a DoE Phase II Grand Challenge

• Task is  to develop fluid models of plasma transport across 
toroidal (i.e. doughnut-shaped) magnetic fusion confinement 
devices (e.g. tokamaks) which cover the whole plasma cross
section or the full torus

• Full torus models require more memory and compute power
than is available on the C90 (80Mw) and J90s (512Mw)

=> Parallel Implementation on the T3E



Model and Numerics: Equations
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• The code solves 3 partial differential equations for many 
radial grid points and Fourier harmonics:

parallel ion velocity

ion temperature

electrostatic potential



Model and Numerics
• Finite differences are used for the radial coordinate, r.

• Fourier series expansions are used for the angular variables,  
(short way around torus) and $(long way around torus).

Poloidal cross section

r



Model and Numerics
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• The representation used for the variables in the equations is:

• Since the distribution of Fourier harmonics and the size of the 
radial region are strongly coupled, the calculation uses a narrow 
wedge of m and n modes
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• A two-step second-order-accurate, time-centered 
advancement, implicit linear, explicit nonlinear, 
scheme is used.
 
• Equations: 
                                                                              
• Numerical Scheme:

Model and Numerics
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Model and Numerics: Numerical Scheme

Nonlinear Terms (N(X))

Explicit

Convolutions over Poloidal and 
Toroidal Fourier Harmonics

Analytic Convolutions
(narrow wedge of harmonics)

Linear Terms (L and L+ t/2 R)

Implicit

3 Point Finite Differences

Block Tridiagonal Matrices

BTMS by Hindmarsh
(gaussian elimination)



Multi-CPU implementation
• For the linear operations, each processor 
does all of the radial grid for a subset of 
the Fourier harmonics and the matrix 
storage is allocated at runtime for the 
number of processors requested.

• For the nonlinear part of the right-hand-
side including the convolutions, each 
processor does all the Fourier harmonics 
for a radial slice.

• Global communication follows both 
types of parallel calculation.
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PVM Implementation
• Serial code is replicated on all processors

• Only global communications are for the matrices and 
the convolutions 

• Only the memory of the matrices is divided between 
processors: The memory is “allocated” at run time according
to the number of processors requested

• This means that once the code is compiled any number of
processors can be tried without having to recompile



• Loading instructions and data 
cache time was reduced by 
making the outer loop for 
convolutions over the radial 
dimension for maximum re-use 
of cache residency.

• The 512 processor T3E-900 
model at NERSC has both 
faster processors  and 
communication.

Multi-CPU Optimization
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• PVM time was reduced by packing longer arrays for global 
communications. 



Multi-CPU optimization
• The elapsed time per step decreased from about 40 to 10 
with optimizations.
• The optimal number of processors for this problem size 
increased from about 32 to 64.
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Optimal number of processors
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• The optimal number of processors increases with the radial 
grid and number of Fourier harmonics.
•The optimal number of processors for the largest problem 
size below is about 128.



Results of nonlinear calculations
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• A full 3-D calculation has been completed on the T3E.
• There is a slow decay of the fluctuations in the nearly steady 
state phase, but they remain radially localized during the whole 
nonlinear phase.



Results of nonlinear calculations
• No large-scale structures are observed, so the turbulence is 
localized.



T3E Issues: Performance
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• Performance still a factor of ~3 shy of best performance on C90
(We need access to the larger memory of the T3E to perform
better resolved calculations)

• Degree of parallelism achieved comparable to that on C90
(Poisson solver remains to be parallelized on the T3E)



T3E Issues: Administrative
• Maximum run time in queues other than gc128 and gc256
is inadequate: we get around 300 steps in 15,000
minutes and need hundreds of resubmissions to complete a 
calculation

• Heavy machine load downgrades performance (even though
the requested number of processors is locked to our job) by
adversely affecting communications

• Problem size, hence ability to use more processors efficiently,
seriously limited by small memory per node

Beyond the T3E
• More memory per node

• Faster communications


