
Cori Application
Readiness Strategy
and Early
Experiences

March, 2016

Code Coverage

Breakdown of Application Hours
on Hopper and Edison 2013

Resources for Code Teams
• Early access to hardware

– Access to Babbage (KNC cluster) and early “white box” test systems expected in 2015
– Early access and significant time on the full Cori system

• Technical deep dives
– Access to Cray and Intel staff on-site staff for application optimization and

performance analysis
– Multi-day deep dive (‘dungeon’ session) with Intel staff at Oregon Campus to

examine specific optimization issues

• User Training Sessions
– From NERSC, Cray and Intel staff on OpenMP, vectorization, application profiling
– Knights Landing architectural briefings from Intel

• NERSC Staff as Code Team Laisons (Hands on assistance)
• 8 Postdocs

NESAP Postdocs

(1 FTE Postdoc +)
0.2 FTE AR Staff

0.25 FTE
COE

1 Dungeon Ses. +
2 Week on site w/
Chip vendor staff

Target Application Team
Concept

1.0 FTE
User Dev.

Taylor Barnes
Quantum ESPRESSO

Brian
Friesen
Boxlib

Andrey Ovsyannikov
Chombo-Crunch

Mathieu Lobet
WARP

Tuomas Koskela
XGC1

Tareq Malas
EMGeo

NERSC Staff associated with NESAP

Nick Wright Katie Antypas Brian Austin Zhengji Zhao

Jack Deslippe
Woo-Sun Yang

Helen He Ankit Bhagatwala

Doug Doerfler

Richard Gerber

Rebecca Hartman-Baker

(1 FTE Postdoc +)
0.2 FTE AR Staff

0.25 FTE COE

1 Dungeon Ses. +
2 Week on site w/
Chip vendor staff

Target Application Team
Concept

1.0 FTE
User Dev.

Brandon Cook Thorsten Kurth

Stephen Leak

Timeline

Time

Jan
2014

May
2014

Jan
2015

Jan
2016

Jan
2017

Prototype Code Teams
(BerkeleyGW / Staff)

-Prototype good practices for
dungeon sessions and use of on
site staff.

Requirements
Evaluation

Gather Early Experiences
and Optimization
Strategy

Vendor
General
Training

Vendor
General
Training

NERSC Led OpenMP and Vectorization Training (One Per Quarter)

Post-Doc Program

NERSC User and 3rd Party Developer Conferences

Code Team Activity

Chip Vendor On-Site Personnel / Dungeon Sessions

Center of Excellence

White Box Access Delivery

Timeline

Time

Jan
2014

May
2014

Jan
2015

Jan
2016

Jan
2017

Prototype Code Teams
(BerkeleyGW / Staff)

-Prototype good practices for
dungeon sessions and use of on
site staff.

Requirements
Evaluation

Gather Early Experiences
and Optimization
Strategy

Vendor
General
Training

Vendor
General
Training

NERSC Led OpenMP and Vectorization Training (One Per Quarter)

Post-Doc Program

NERSC User and 3rd Party Developer Conferences

Code Team Activity

Chip Vendor On-Site Personnel / Dungeon Sessions

Center of Excellence

White Box Access Delivery

Dungeon
Prep

Working With Vendors

Dungeon Session Speedups (From Session
and Immediate Followup)

NERSC Is uniquely
positioned between
HPC Vendors and HPC
Users and Applications
developers.

NESAP provides a
power venue for these
two groups to interact.

What Has Gone Well
1. Setting requirements for Dungeon Session motivates teams to get started early and improves quality of dungeon session.
2. Engagement with IXPUG and user communities (Exascale Workshops at CRT)
3. Large number of NERSC and Vendor Training (Vectorization, OpenMP, Tools/Compilers) Well Received
4. Learned a Massive Amount about Tools and Architecture (VTune, SDE, HBM etc.)
5. Vendor staff helpful to work with. Very pro-active.
6. Pipelining Code Work Via Cray and Intel resources

Warp Vectorization Improvements at The Dungeon - Directly enabled by tiling
work with Cray COE in Pre-dungeon

Lower is better

Application

All memory
on far
memory

All memory
on near
memory

Key arrays
on near
memory

BerkeleyGW baseline 52% faster 52.4% faster

EmGeo baseline 40% faster 32% faster

XGC1 baseline 24% faster

Techniques and Tools to Target
Arrays for Fastmem:

Cray COE Intel-Pre-Dungeon Intel Post-Dungeon

What Has Gone Well (Cont)
7. Bandwidth sensitive applications that live in HBM expected to perform very well.

8. A lot of Lessons Learned: techniques to place key-arrays in fast-memory, improve prefetching
effectiveness, coping without L3 cache etc...

9. CPU Intensive tasks (BGW GPP Kernel) expected to perform well (> Haswell) on KNL.

10. Postdocs deeply engaged.

The N9 workload analysis
shows a large fraction of
jobs use < 16GB of
memory per node

CESM (NERSC LEAD Helen He)

- 12 -

Version 1

• Simplify expressions to minimize #operations

• Use internal GAMMA function

Version 2

• Remove “elemental” attribute, move loop inside.

• Inline subroutines. Divide, fuse, exchange loops.

• Replace assumed shape arrays with loops

• Replace division with inversion of multiplication

• Remove initialization of loops to be overwritten later

• Use more aggressive compiler flags

• Use profile-guided optimization (PGO)

Version 3 (Intel compiler only)

• Use !$OMP SIMD ALIGNED to force vectorization

XGC1 (NERSC Lead Helen He Ankit Bhagatwala)

Example From Cray COE Work on XGC1

~40% speed up
 for kernel

XGC1 (NERSC Lead Helen He Ankit Bhagatwala)

Example From Cray COE Work on XGC1

~40% speed up
 for kernel

- 15 -

subroutine ell_spmv(mat, ind, x, z, m, n, ndiag)
 implicit none
 ! --
 integer :: m, n, ndiag
 integer, dimension(ndiag, m) :: ind
 complex*16, dimension(n) :: x
 complex*16, dimension(m) :: z
 complex*16, dimension(ndiag, m) :: mat
 ! --
 integer :: i, j
 complex*16 :: ztmp
!$omp parallel do private(ztmp)
 do i = 1, m
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(j,i) * x(ind(j,i))
 end do
 z(i) = ztmp
 end do
end subroutine ell_spmv

!$omp parallel do private(ztmp)
 do i = 1, 2 * nx * ny
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(i,j) * x(ind(i,j))
 end do
 z(i) = ztmp
 end do
!$omp parallel do private(ztmp)
 do i = 2 * nx * ny + 1, m - nx * ny
 ztmp = (0.0d0, 0.0d0)
 ! stride 1
 ztmp = ztmp + mat(i,1) * x(i - 2)
 ztmp = ztmp + mat(i,2) * x(i - 1)
 ztmp = ztmp + mat(i,3) * x(i)
 ztmp = ztmp + mat(i,4) * x(i + 1)
 ! stride nx
 ztmp = ztmp + mat(i,5) * x(i - 2 * nx)
 ztmp = ztmp + mat(i,6) * x(i - nx)
 ztmp = ztmp + mat(i,7) * x(i)
 ztmp = ztmp + mat(i,8) * x(i + nx)
 ! stride nx * ny
 ztmp = ztmp + mat(i,9) * x(i - 2 * nx * ny)
 ztmp = ztmp + mat(i,10) * x(i - nx * ny)
 ztmp = ztmp + mat(i,11) * x(i)
 ztmp = ztmp + mat(i,12) * x(i + nx * ny)
 z(i) = ztmp
 end do
!$omp parallel do private(ztmp)
 do i = m - nx * ny + 1, m
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(i,j) * x(ind(i,j))
 end do
 z(i) = ztmp
 end do

Vector loads when vectorized in i

EMGEO (NERSC LEAD Scott French,
Thorsten Kurth, Tareq Malas)

VASP (NERSC LEAD Zhengji Zhao)

- 16 -

Test case: benchPdO2

Estimating the performance impact of HBW memory
to VASP code via FASTMEM compiler directive and
the memkind library on Edison

VASP is a material science code that consumes the
most computing cycles at NERSC.

This test used a development version of the VASP
code.

Adding the FASTMEM directives to the code was done
by Martijn Marsman at Vienna University

Boxlib (NERSC LEAD Brian Friesen)

Block AMR Framework.

Added “tiling” to improve data locality and improve OMP scaling on
Xeon-Phi.

Now exploring in transit analysis using specialized analysis ranks
and burst buffer.

Quantum ESPRESSO (NERSC Lead Taylor Barnes / Jack Deslippe)

How improve a code where most FLOPs occur in
libraries?

Targeting Exact Exchange Problems. Characterized by
many parallel FFTs.

Strategy:

Improve on-node performance by
 increase the on-noe FLOP density
and reducing inter-node communication.
Moving individual FFTs to a single node shared
memory model and exploiting new band-pair
parallelism with MPI.

Quantum ESPRESSO (NERSC Lead Taylor Barnes / Jack Deslippe)

How improve a code where most FLOPs occur in
libraries?

Targeting Exact Exchange Problems. Characterized by
many parallel FFTs.

Strategy:

Improve on-node performance by
 increase the on-noe FLOP density
and reducing inter-node communication.
Moving individual FFTs to a single node shared
memory model and exploiting new band-pair
parallelism with MPI.

Exploit parallelism not used by default in app.

