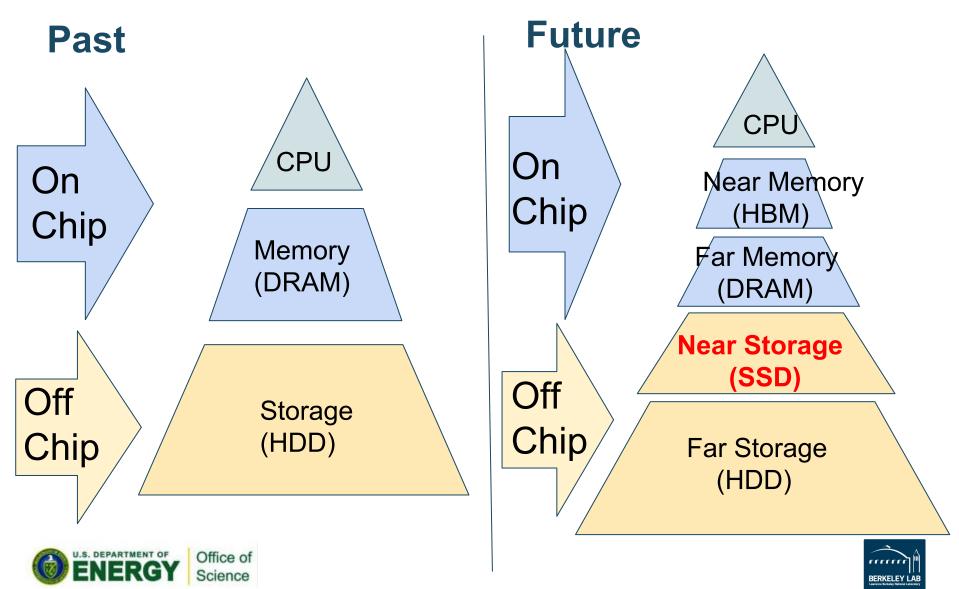
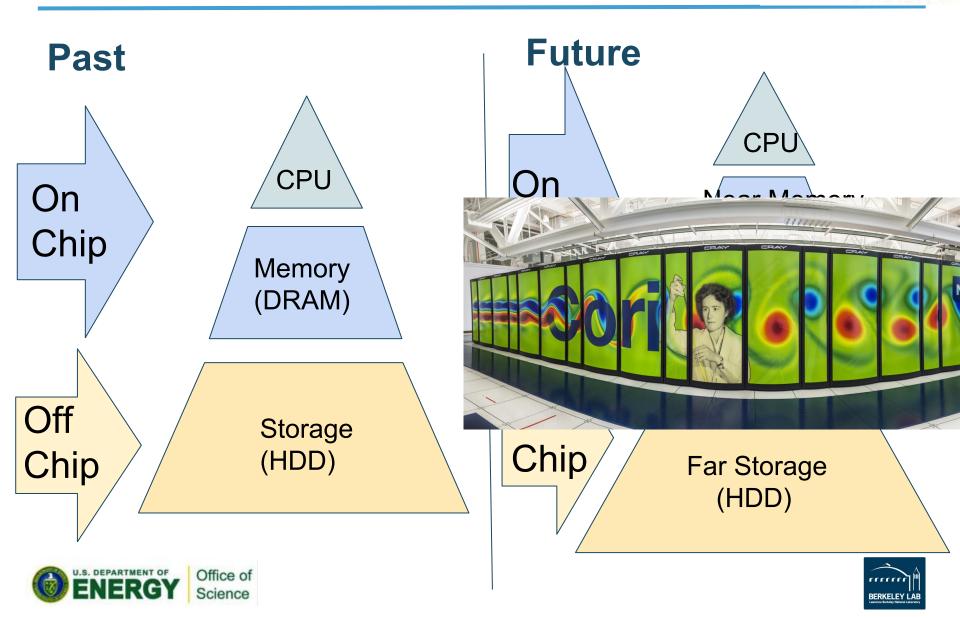


Cori Phase 1 Burst Buffer



Debbie Bard, Wahid Bhimji, Dave Paul, et. al.



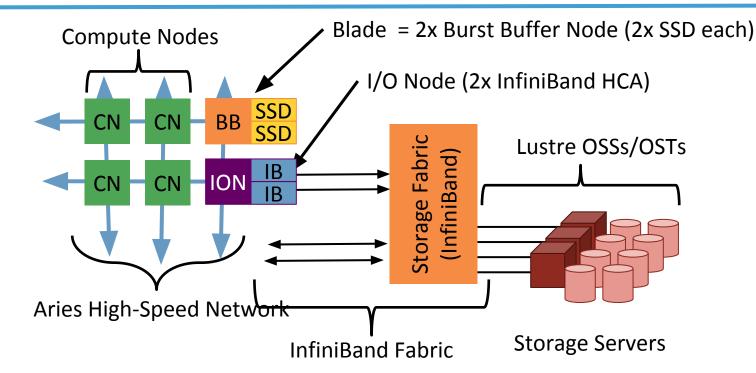
HPC memory hierarchy is changing

HPC memory hierarchy is changing

YEARS at the

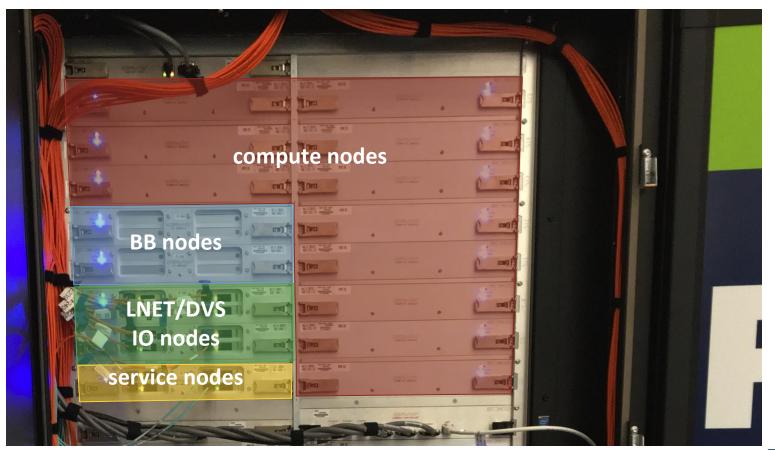
- Handle spikes in IO bandwidth requirements without increasing size of PFS
 - Reduce job wallclock time
 - Compute resources idle during IO bursts
- Disk-based PFS bandwidth is expensive
 - Capacity is relatively cheap
- SSD bandwidth is relatively cheap
- -> Separate bandwidth and spinning disk
 - Provide high BW without wasting PFS capacity
 - Leverage Cray Aries network speed

Burst Buffer implementation


- High BW SSDs in service nodes, directly attached to Aries network
- Software creates pool of available memory
 - DataWarp service daemons
 - DataWarp file system (using DVS, LVM, XFS)
 - Integrated with SLURM
- Allocation portions of this pool to users per-job, or in a persistent reservation
- Users see a POSIX-compatible FS
- Can stage data in and out from BB to PFS
 - Before/after compute job starts saves compute time
 - Asynchronously during compute job

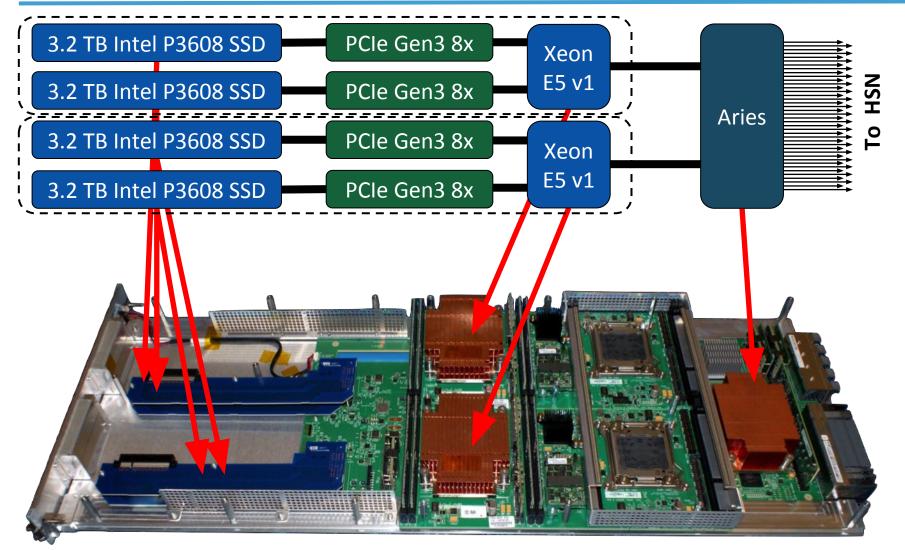
Burst Buffer Architecture

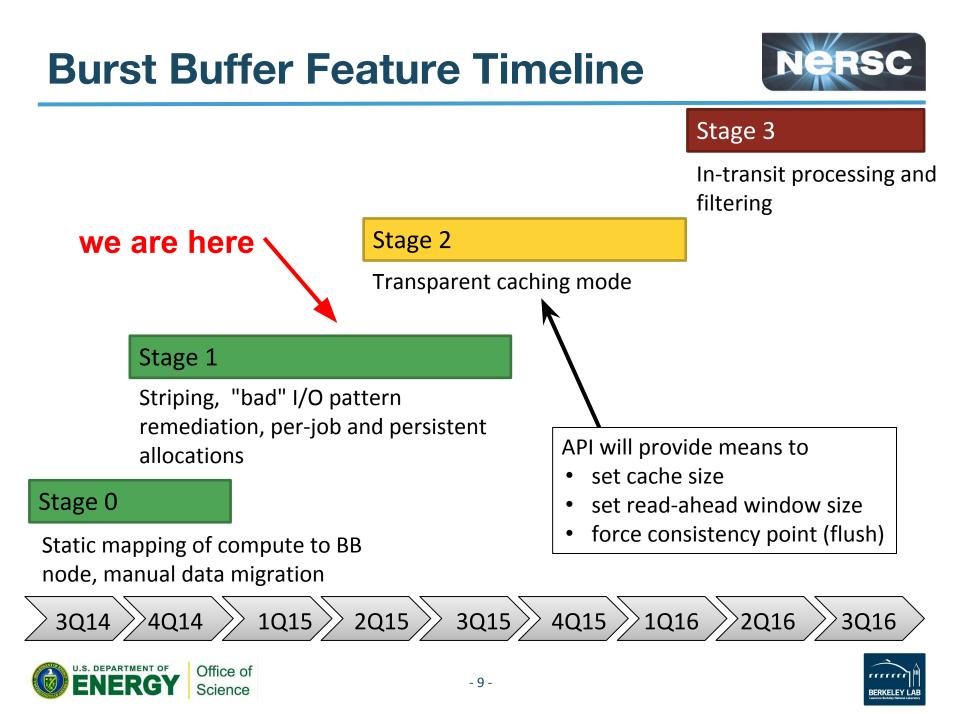
- Cori Stage 1 configuration: 920TB on 144 BB nodes (288 x 3.2 GB SSDs)
- >1.5 PB total coming with Cori Phase 2
- Lustre: 30PB PFS



Burst Buffer Architecture Reality

BB nodes scattered throughout HSN fabric Glenn Lockwood 2 BB blades/chassis (12 nodes/cabinet) in Phase I




Burst Buffer Blade = 2xNodes

Burst Buffer Early User Program

- Aug 10th: solicited proposals for BB Early Users program.
 - Award of exclusive early use of BB on Cori P1, plus help of NERSC experts to optimise application for BB.
- Selection criteria include:
 - Scientific merit; Computational challenges; Cover range of BB data features; Cover range of DoE Science Offices.
- Great interest from the community, 29 proposals received.
- Decided to support more applications than we'd originally anticipated
 - some applications already had LDRD funding at LBNL, and existing support from NERSC staff.
- ~20 applications not supported by NERSC staff, but do have early access to Cori P1 and the BB.

Burst Buffer Early Users

Burst Buffer User Case	Active Early Users
IO Bandwidth: Writes (checkpointing)	Nyx/BoxLib astro simulationsVPIC IO
IO Bandwidth: Reads	 Electron Cryo-microscopy image analysis
"Bad" IO pattern, eg. high IOPs	Spark analytics frameworkALS TomoPy
Workflow coupling and visualization	 Climate simulation, analysis and visualization
in transit / in-situ analysis	 ChomboCrunch / VisIt carbon sequestration simulation
Staging intermediate data	 Phoenix3D radiation transport simulation ALICE data analysis (HEP)

~40 active Burst Buffer Users

- Initial instabilities resolved in early patches
 - Early Users are the best testers of a new system!
 - New issues cropping up as use patterns are extended
- Minor usability issues being addressed by Cray
 - Syntax sensitivities, informative error codes, improved documentation...
- Work is on-going, in collaboration with Cray, to understand user application IO patterns and performance
 - optimising configuration of hardware/software for widely varying use cases is an interesting challenge
 - e.g. balance of performance in writing large vs small files

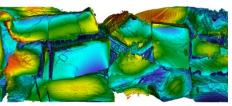
Performance testing ongoing

- Burst Buffer is exceeding (nearly all) benchmark performance targets
 - Work on-going to improve MPIO shared file write
 - IOPs particularly impressive
 - Out-performs Lustre (Lustre also exceeds requirements)

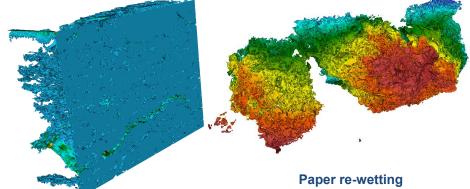
	140 Burst Buffer Nodes : 1120 Compute Nodes ; 4 processes/node							
	IOR Pos	six FPP	IOR MPIO S	Shared File	IOPS			
	Read	Write	Read	Write	Read	Write		
Required (GB/s) or IOPS	820	820	656	656	7200000	7200000		
Best Measured	905	873	803	351	12591978	12527427		
Lustre (peak SOW)	708	751	573	223	-	-		

Science Bandwidth tests: *8 GB block-size 1MB transfers IOPS tests: 1M blocks 4k transfer

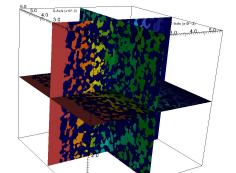
Example application (preliminary)

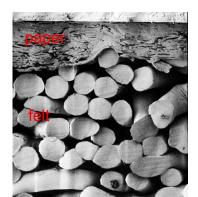

ChomboCrunch

Simulates pore-scale reactive transport pH on crushed calcite in capillary tube Transport in fractured dolomite


processes associated with carbon sequestration

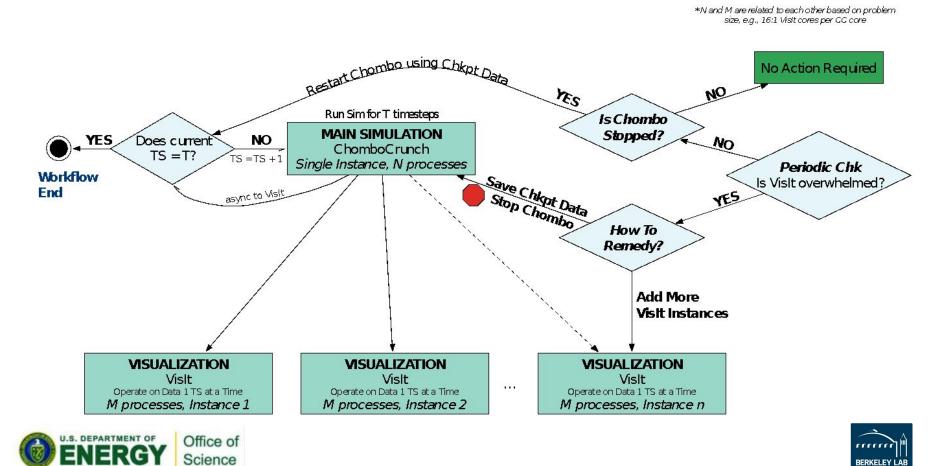
- Applied to other subsurface science areas:
 - Hydrofracturing (aka "fracking")
 - Disposing of used fuel
- Extended to engineering applications
 - Lithium ion battery electrodes
 - Paper manufacturing (hpc4mfg)
- *Common feature: ability to* perform direct numerical simulation from image data of arbitrary heterogeneous, porous materials




Flooding in fractured Marcellus shale O, diffusion in Kansas aggregate soil

Andrey Ovsyannikov, LBL

Electric potential in Li-ion electrode



BERKELEY LAE

ChomboCrunch + Vislt workflow

ChomboCrunch+Visit Workflow Execution Overview

- Running more MPI processes gives higherresolution simulations -> produces larger output plot files
- Benchmark: reactive flow in a cylinder channel randomly packed by a set of spheres
 - Mesh resolution varies from 256³ (512 MPI ranks) to 2048*512*512 (16384 MPI ranks)

# MPI ranks	File size	Requested BB capacity	BB BW	Lustre BW
512	7.4GB	1 BB node	1.8GB/s	0.44GB/s
2048	29.5GB	4 BB nodes	4.7GB/s	1.5GB/s
16384	236 GB	16 BB nodes	34.2GB/s	8.4GB/s

Office of Science Burst Buffer enables highresolution analysis of simulations

- Writing large files (with large block I/O) is fast (checkpointing use case)
- Reading/Writing small files (or small I/O transfers) is problematic in some cases
 - Generally in many cases our BB performance is worse than our Lustre filesystem (which is high-performance).
 - Client-side caching helps Lustre performance
- Some jobs with many files fail at large scale on compute nodes
- Still some system instabilities

Working to profile applications I/O and tune burst buffer stripe sizes and other configurables...

1. DVS client-side caching

- Lustre has client-side caching, currently DVS does not
- Will help small R/W transfers on BB
- Can currently use "iobuf" library for user-side caching

2. Smaller granularity

- "Grain" is minimum amount of space allocated on each BB node, currently 213GB
 - E.g. request 500GB BB allocation get 3x213GB "grains".

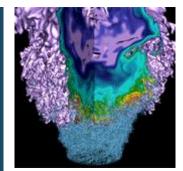
3. MPI-IO shared file performance

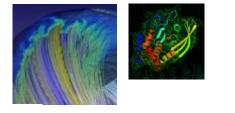
• Change underlying file striping on BB

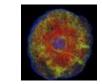
We're working with Cray to improve BB performance

Office of Science

- Currently only Early Users have access
- Plan to allow all users access shortly after we've accepted the BB
 - Dependent on system being stable i.e. no kernel panics that bring down compute nodes, major bugs fixed.




- BB/DataWarp functional and meets most SOW performance targets
 - out-performs Lustre in benchmarks
- Variety of issues affecting user progress
 - but these are being resolved and users making some progress
- Some performance pay-off for real use-cases but not all.
 - We are learning/tweaking configuration
 - Working with Cray to implement performance improvements
- Profiling I/O patterns to optimise and starting to build whole workflows using the Burst Buffer.



Thankyou

Use Cases by BB feature

Application	I/O bandwidth: reads	I/O bandwidth: writes (checkpointing)	High IOPs	Workflow coupling	In-situ / in-transit analysis and visualization	Staging intermediate files/ pre-loading data
Nyx/Boxlib		X		x	X	
Phoenix 3D		x		x		x
Chomo/Crunch + Visit		x		x	x	
Sigma/UniFam/Sipros	x	x	x			x
XGC1	x	x				x
PSANA				x	x	x
ALICE	x					
Tractor			x	x		х
VPIC/IO					х	x
YODA			x			x
ALS SPOT/TomoPy	x			x	x	X
kitware				x	x	BEKNELEY LAB

Use Cases by BB feature

Application	I/O bandwidth: reads	I/O bandwidth: writes (checkpointing)	High IOPs	Workflow coupling	In-situ / in-transit analysis and visualization	Staging intermediate files/ pre-loading data
Electron cryo-microscopy						x
htslib						x
Falcon	x	x				
Ray/HipMer	x	x	x			x
CESM	x	x				
ACME/UV-CDAT					x	x
GVR		x				
XRootD				x		x
OpenSpeedShop	x	x				
DL-POLY		x				
СР2К		x				
ATLAS	x		x			x