Edison and Cori: User Update

Zhengji Zhao, Helen He, Wahid Bhimji

NERSC User Group Meeting
Berkeley, CA, March 24, 2016
Edison upgrades (11/30/2015-3/15)

• Edison move 11/30-12/23/2015
 – Edison disassembled, reassembled, integrated, reconfigured and tested at CRT
 – 1/4/2016 users were enabled
 – Free charging period 1/4 – 1/10/2016

• Switch to Slurm
 – Slurm configuration has been in continuous improvement and adjustment
 – Users needed a lot of help with running jobs and workflow switch
 – Favor largely to big jobs
 – Major issue is the slow queue turnaround – we are working on it

• /scratch3 upgrade to Grid Raid
 – I/O performance issue is still in investigation
Edison upgrades

• Host IP change
 – Users had ssh issues to login

• NEW SSH authentication mechanism (1/12/2016)
 – Login issue as well

• Edison experienced multiple planned and unplanned down times (power outage) during Jan - Mar, 2016.
 – User jobs affected

• CDT upgrades on 12/23/2015 (15.12), 2/3/2016(16.01), 3/22/2016 (16.03)
 – Encountered a few major bugs; Workarounds provided for all bugs, and major bugs were fixed as of 1/15; A remaining bug will be fixed in CDT 16.03. Fixes were in place on 3/22/2016.
 – Extended the CDT testing script to include more tests
 – Default option --craype-buildtools-check
Edison upgrades

• A shorter purging period will be in place effective 4/1/2016
 – Purging period will be 8 weeks (from 12 weeks)
 – 84%, 81% full on /scratch1 and 2 file systems currently

• /scratch3 quota in place as of 3/17/2016
 – Quota 100TB disk space, 50,000,000 inode
 – Quota check will be in place in the job submission filter, fail the submission if over quota
 – 74% full

• /scratch1 and /scratch2 will be upgraded to Grid Raid, time TBD
 – Depending on when the current /scratch3 performance bug is resolved
SSP benchmark performance after the move

NERSC6 SSP application runs under Slurm and Torque/Moab

Edison performance monitoring:
https://my.nersc.gov/benchmarks-cs.php
FCT performance regression is resolved

FCT performance on Edison before and after the move to CRT building

Before the move

<table>
<thead>
<tr>
<th>Run date</th>
<th>output/KEY:tag</th>
<th>ntasks</th>
<th>MPI_Alltoall time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/19/14</td>
<td>fct99p1.o785758</td>
<td>132367</td>
<td>40.94</td>
</tr>
<tr>
<td>1/15/15</td>
<td>fct100p1.o2274657</td>
<td>133296</td>
<td>33.36</td>
</tr>
</tbody>
</table>
I/O performance degradation after the Grid Raid upgrade is still in investigation

- This is roughly 3 times performance degradation.
- NERSC needs the recommendation from Cray and Seagate about how to run IOR benchmark to compare with the MDGRID performance.
Cori Update

Helen He and Wahid Whimji
Cori Usage Info

- 11/12/2015: All users enabled
- 11/30/2015 – 1/4/2016: Edison offline
- 12/15/2015: Hopper retired.
- 1/12/16: Cori started charging when AY16 began

More large jobs during free time 😊
Cori Usage Info: Free Period and AY16

- Early users were enabled in 7 phases:
 - Allow Cori system became ready in various aspects (networking, programming environment, batch system, etc.)

162M MPP hours used (10/29/15-1/11/16)

75.8M MPP hours used (1/12/16-3/22/16)
Cori Phase 1 Data Features

• **File Systems**
 – Burst Buffer for high bandwidth, low latency I/O
 – High performance Lustre file system: 28 PB of disk, >700 GB I/O bandwidth
 – Cross mounting of file systems (Cori scratch on Edison and DTNs) (TBA)
 – Large amount of memory per compute node (128 GB) as well as some high memory login nodes (775 GB).

• **Networking**
 – Improved outbound Internet connections (eg. to access a database in another center)
 – Software Defined Networking R&D for high bandwidth transfers in and out of the compute node (TBA)

• **On node software**
 – Improved shared library performance
 – User-defined images/Shifter
Cori Phase 1 also known as the "Cori Data Partition"

Designed to accelerate data-intensive applications, with high throughput and “real time” need.

- "shared” partition. Multiple jobs on the same node. Larger submit and run limits. 40 nodes set aside
- The 1-2 node bin in the "regular" for high throughput jobs. Large submit and run limits.
- “realtime” partition for jobs requiring real time data analysis. Highest queue priority. Special permission only.
- Internal sshd (CCM mode) in any queue
- Large number of login/interactive nodes to support applications with advanced workflows
- “burst buffer” usage integrated in SLURM, in early user period.
- Encourage users to run jobs using 683+ nodes on Edison with queue priority boost and 40% charging discount there.
Transition from Hopper/Edison to Cori

• Programming environment is very similar to Hopper/Edison. Porting to Cori is straightforward in regards to software building.
• The aspect that users need to adjust the most is the transition from Torque/Moab to SLURM.
• Provided detailed documentations on SLURM transition guide, example batch scripts, and tutorials.
• Worked with some specific applications and users for the porting. CESM is one such example. It is a new machine port, with bfb required.
SLURM Batch Scheduler Adoption

• Overall SLURM adoption is smooth.
• Easy to use “premium”, “ccm”, good support and usage for “shared” and “realtime”.

• A few traps (with user education):
 – Hyperthreading is on by default
 • SLURM sees 64 CPUs per node
 • Asking nodes with “#SBATCH –n”, but without “#SBATCH –N” may get half the node desired
 • Need to set OMP_NUM_THREADS=1 explicitly to run with pure MPI (for hybrid MPI/OpenMP program compiled with openmp enabled)
 – Automatic process and thread affinity is good. Can explore with advanced settings for more complicated binding options.
Batch Job Wait Time

• Users reported about LONG wait time for jobs
• Monitoring and tuning SLURM configuration is an ongoing task
• Changes made on Jan 15
 – Added max number of backfill jobs per partition (on top of max number of backfill jobs per user)
 – Decreased max size of debug from 128 to 112.
 – Communicated with individual users to use the “shared” partition, job arrays, and bundling jobs.
 – Jobs do not plan to run in AY16 were deleted
 – Most debug jobs then started within 30 min instead of hours, many now start in a few min.
 – The regular jobs wait time are significantly smaller too
• Changes made on Mar 22 for the scheduling algorithm greatly increased system utilization (keep watching 😊)
NERSC Custom Queue Monitoring Script

• Original “sqs” provides basic batch job info plus the job ranking based on start time provided by the backfill scheduler.

• A new version of “sqs” was deployed on Jan 19 with two columns of ranking values to give users more perspective of their jobs in queue.
 – Added job priority ranking with absolute priority value (a function of partition, QOS, job wait time, and fair share)
A Few Tips to Get Faster Job Turnaround

• Request shorter wall time, do not use allowed max wall time.
• Use “shared” partition for serial jobs or very small parallel jobs.
• Bundle jobs (multiple “srun”’s in one script, sequential or simultaneously)
• Use Job Arrays (better managing jobs, not necessary faster turnaround). Each array task is considered a single job for scheduling.
• Use job dependency feature for managing workflow.
Resolved: Cray HDF5 with Intel16

• Internal compiler error for Fortran codes when using cray-hdf5, and cray-hdf5-parallel/1.8.14 with intel/16.0.0.109

• Two workarounds:
 – Use NERSC built hdf5/1.8.14 and hdf5-parallel/1.8.14 with Intel/16.0.0.109 compiler
 – Use cray-hdf5/1.8.14, but swap intel compiler version from 16.0.0.109 to 15.0.1.133.

• cray-hdf5/1.8.16 has been installed and set to default which resolved this issue (Feb 27, 2016)
Workaround: Node Voltage Fault

- Compute node voltage fault only seen with one specific Quantum Espresso application “pw.x”.
- By default, hyperthreading is used. And the application generates a very close sequence of current spikes that may cause the Voltage Converter to self-protect and shut down.
- Workaround by user education to use 1 thread per MPI task. Also modified the NERSC provided module file to set OMP_NUM_THREADS=1. (Jan 16, 2016)
Resolved: /project IO performance

- Two applications reported 10x parallel IO performance slowdown in /project, seen after Dec 25, 2015.
- Fixed during system reboot with scheduled maintenance on Jan 20, 2016.
- Exact cause of slowdown unknown
 - Unlikely due to “Cori DVS nodes GPFS IB cable not used”
Current Issues

• Login nodes crash when hitting Lustre file system bug
• Compute nodes stuck in completing states from certain Burst Buffer jobs
• Compute nodes went down with out-of-memory error from certain applications
• Burst Buffer still in early user period
Cori Phase 1 SSP Performance

Committed SSP: 68.2
Measured SSP: 83.0
Peak Cori Scratch Lustre I/O Performance

POSIX – File-Per-Process

MPI-IO – Single Shared File

- Read: Required 668 GB/s, Best Measured 708 GB/s
 - Write: Required 744 GB/s, Best Measured 751 GB/s

- Read: Required 174 GB/s, Best Measured 573 GB/s
 - Write: Required 174 GB/s, Best Measured 223 GB/s
Thank you.