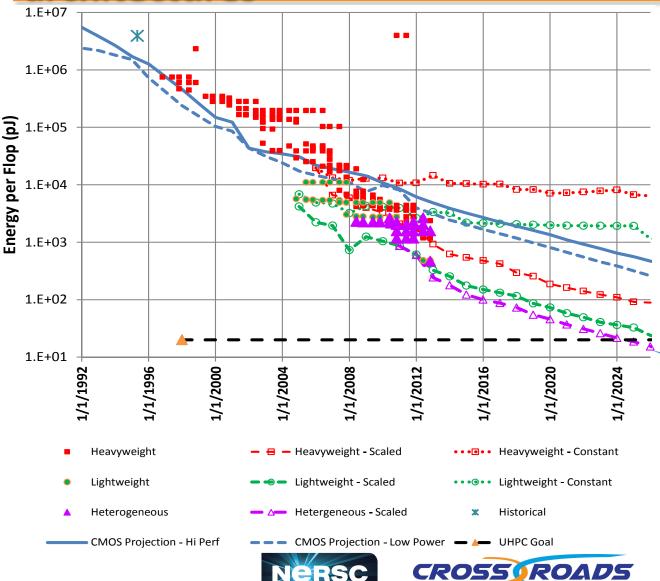


NERSC-9

Nicholas J. Wright, NERSC-9 Chief Architect NUG meeting March 24, LBNL

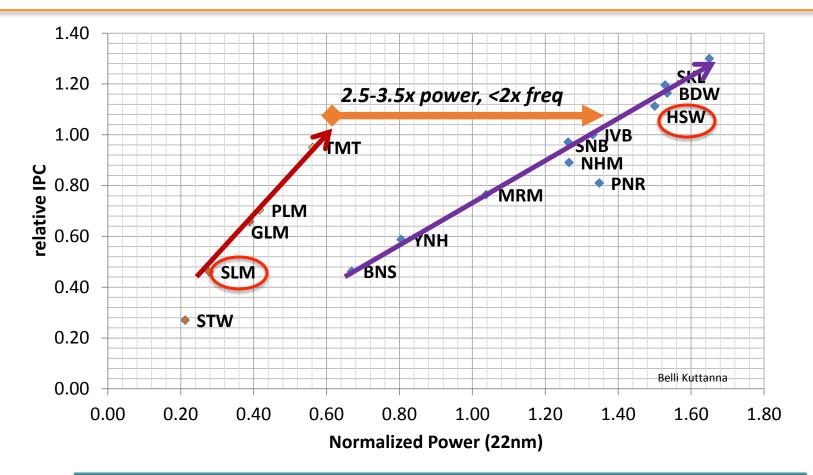
NERSC Timeline

NRP complete 12.5 MW		CRT 25MW upgrade		CRT 35+ MW upgrade			
2015	2016	2016-18	2020	2021	2024	2028	
Staff move in	Edison Move Complete		NERSC-9 150-300		NERSC-10 Capable Exascale	NERSC-11	
NERSC-8 Cori Phase I	NERSC-8 Cori Phase II		Petaflops		for broad Science	5-10 Exaflops	
						11	h


APEX 2020 Current Status

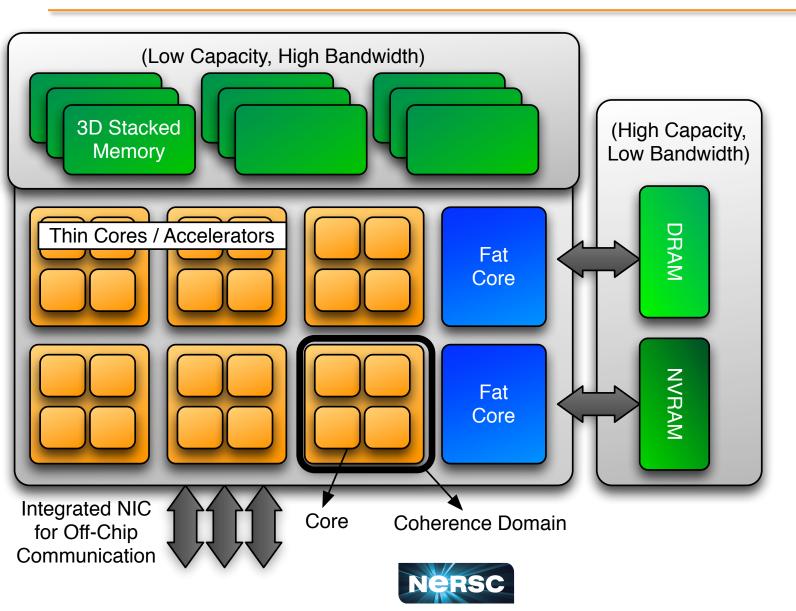
- 3rd joint SC/NNSA procurement
 - After Trinity/NERSC-8 (2016) & CORAL (2018)
- RFP draft technical specs released Nov. 10, 2015
 - 2nd Draft released March 11th

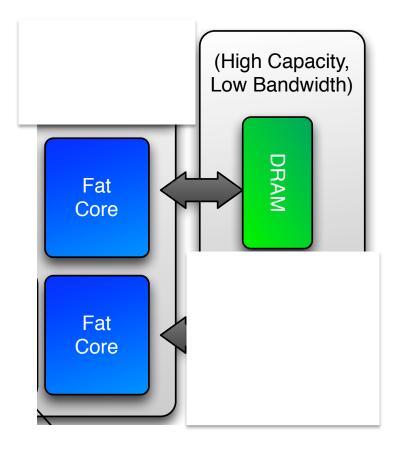
http://www.lanl.gov/projects/apex/_assets/docs/APEX2020_draft_tech_specs_v2.0.pdf


NERSC needs to transition to energy efficient architectures

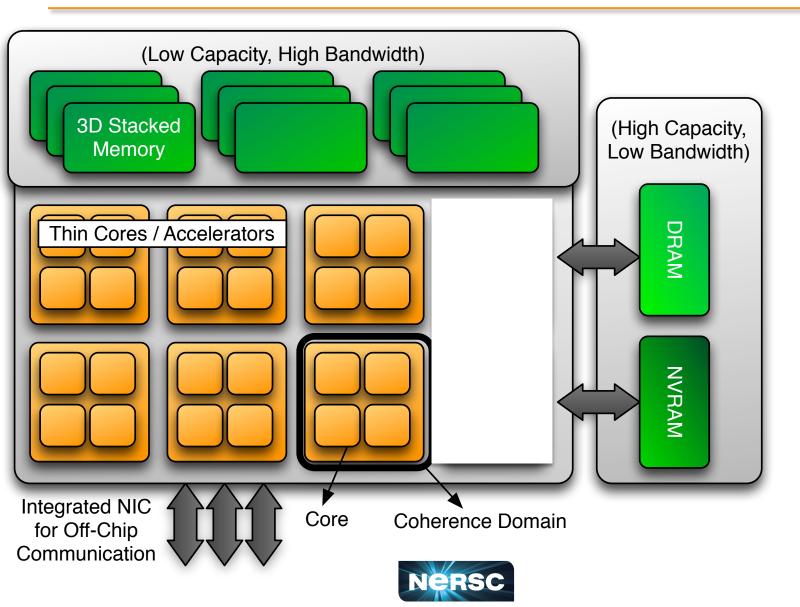
Manycore or Hybrid is the only approach that crosses the exascale finish line

4

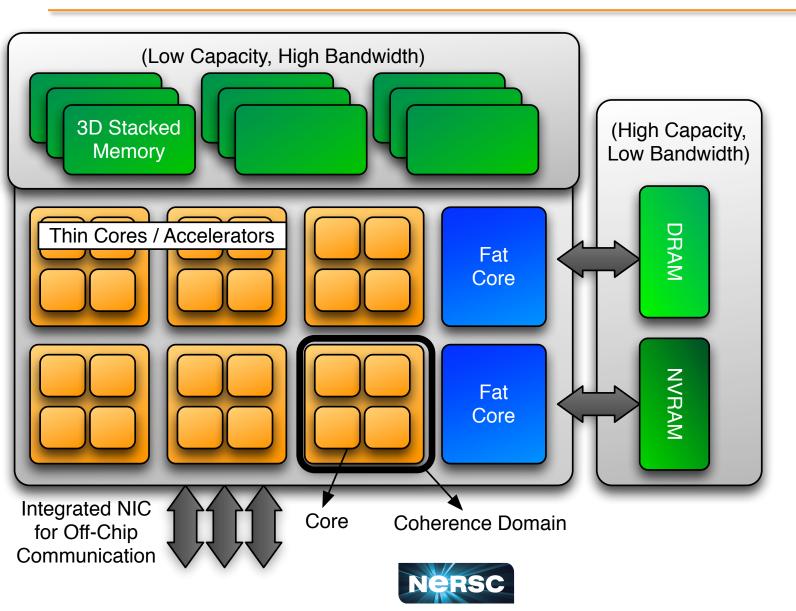

Throughput vs Single Thread: Perf Trade-off


Haswell: Silvermont IPC: ~3x Power: ~5x

Abstract Machine Model for Exascale



Edison - 2012



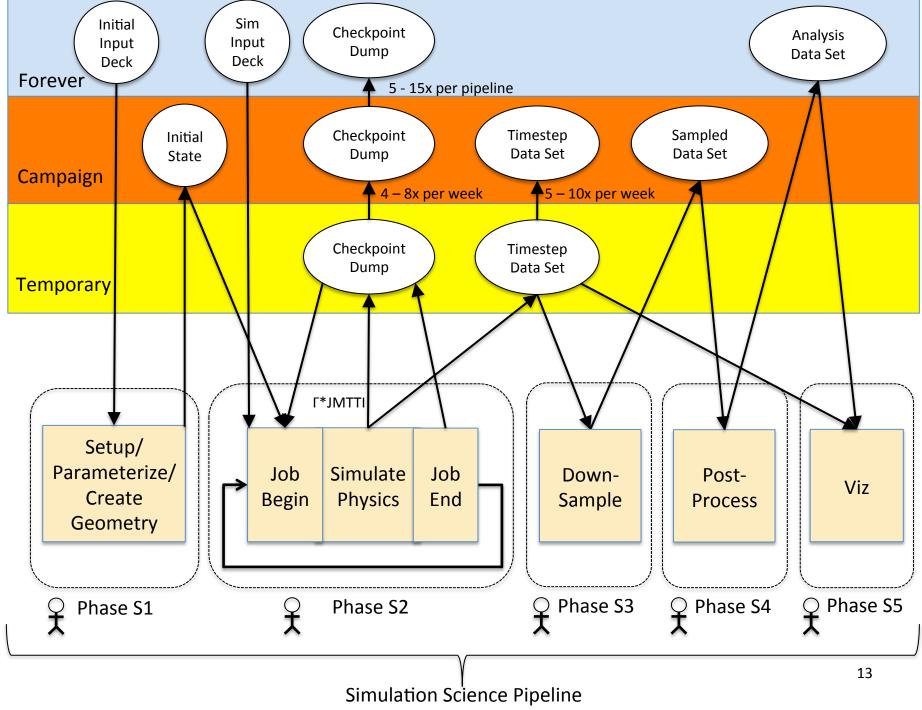
Cori (NERSC-8)- 2016

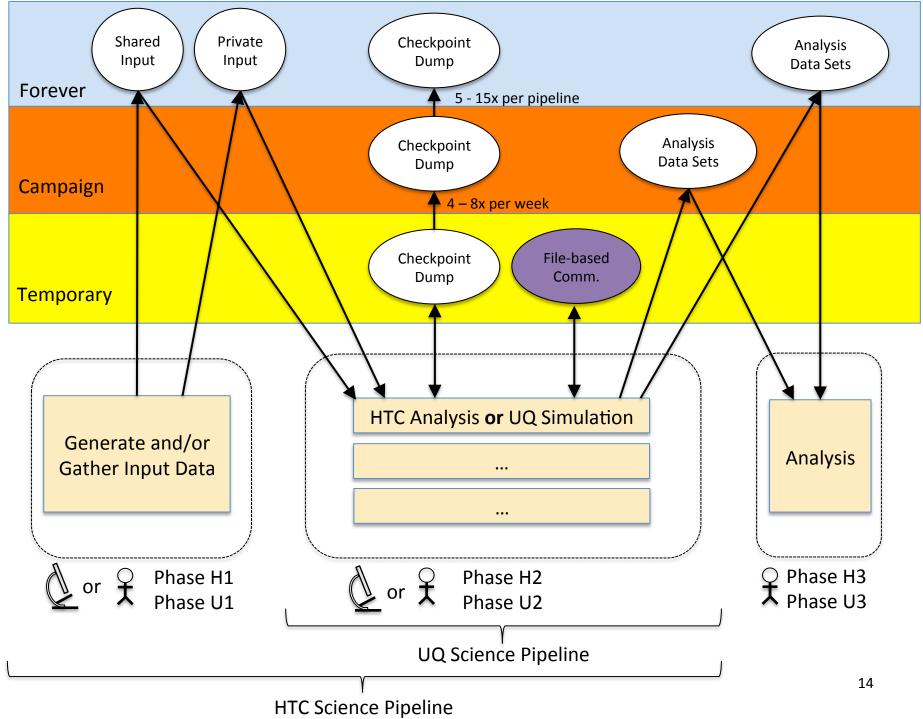
NERSC-9 (2020) ? – An exascale-era architecture

Layer	NERSC-7 (Edison) 2013	NERSC-8 (Cori) 2016	NERSC-9 2020	
High Bandwidth Memory per node	None	16 GB, >400 GB/sec	More !	
DRAM per node	64 GB, ~100 GB/sec	96 GB, 90-100 GB/ sec	Some	
NV-DIMM (byte addressable)	None	None	Maybe	
Non-Volatile (Page addressable)	None	1.5PB, 1.5 TB/sec	10s PBs, 10s TB/sec	
Spinning Disk – /scratch	8PB, 130 GB/sec	28 PB, 700 GB/sec	Collansed laver	
Spinning Disk – longer term (/project)	~30 PB, ~70 GB/sec	~50 PB, ~100 GB/sec	Collapsed layer > 50 PBs ~1 TB/sec	
Таре	~40 PB, ~10 GB/sec	~100PB, ~20 GB/sec	~100s PB, ~10s GB/ sec	
	Ne	RSC		

Market Survey: Storage Technologies are Changing

- NVRAM technologies are cost effective for bandwidth today
 - Burst Buffers in Trinity/Cori (2016) & CORAL (2018)
- In 2020
 - Will any spinning disk be needed for capacity? Cost is the limiting factor
 - NVRAM: How much ? What kind(s) ? Where to put it in the machine? What software (runtime/scheduler/ OS) enhancements will be needed?
 - Workflows !
 - Fusion, Climate, QCD, ALS, JGI, Materials, Sky Survey


https://www.nersc.gov/assets/apex-workflows-v2.pdf



APEX will Define Workflows to Optimize Platform Storage

- A workflow is a description of the steps needed to obtain results in a scientific investigation
- The workflow life cycle typically consists of many computational and data transformation steps
 - Running simulations and/or experiments
 - Analyzing output data
 - Managing data to aid the scientific investigation, including collecting information to benefit future studies and help future validation of results
- Whitepaper released which describes other storage uses cases present in APEX workflows
 - Based upon extensive requirements gathering exercise
 - Includes estimates of data volumes and lifetimes for multiple NERSC, LANL, LLNL and SNL workflows
- Overall goal is to provide a framework to reason about platform storage design decisions
 - Allows vendor to innovate and be flexible

Target System Configuration

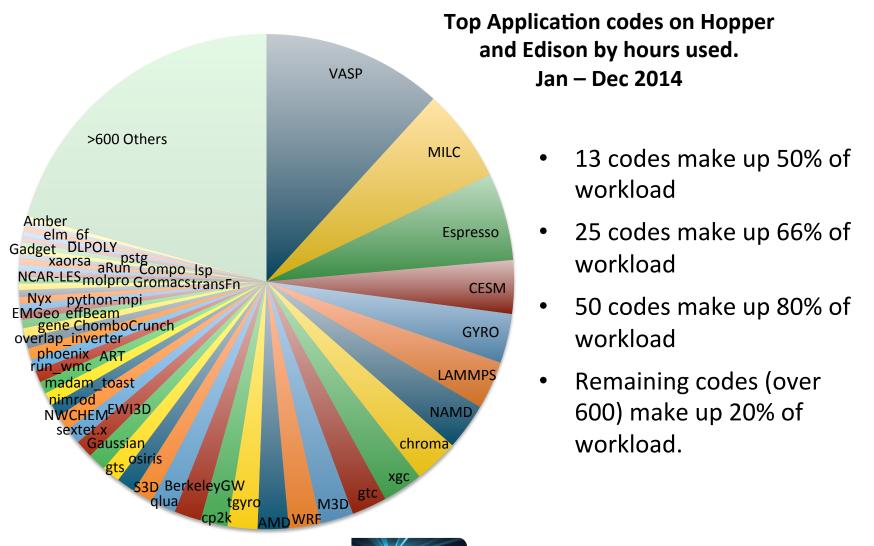
	NERSC-8	NERSC-9 - Target
SSP	> 5x Edison	> 20x Edison
Baseline Memory Capacity	1.1 PB	> 3 PiB
Burst Buffer	1.5 PB 1.5 TB/s	>90 PB >5 TB/s
Disk	22 PB 744 GB/s	

Market Surveys have Formed the Basis of our Requirements Development

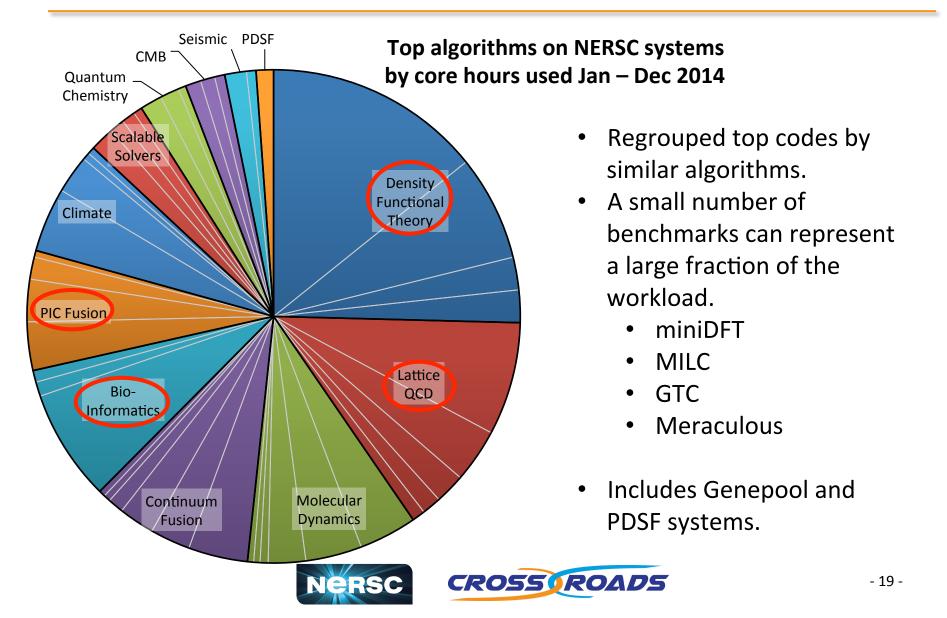
 The Crossroads/NERSC-9 (CN9) teams had many formal (Face-to-Face) and informal (telecon) interactions with vendors over the last 15 months

- Interactions continue leading up to the RFP release

• Market Surveys and interactions focused on major prime and technology provider candidates:



Technical Specifications Include Findings From Workload Analysis and Requirements Workshops


- NERSC workload analysis performed as part of the procurement activities
 - <u>http://portal.nersc.gov/project/mpccc/baustin/</u>
 <u>NERSC 2014 Workload Analysis 30Oct2015.pdf</u>
- NERSC has held one requirements workshop per office looking at 2017 requirements
 - <u>http://www.nersc.gov/science/hpc-requirements-</u> reviews

Over 650 applications run on NERSC resources

NERSC Benchmarks Were Chosen to Represent the Workload

APEX plans to use "mini-apps", some full apps for system evaluation

MiniApp	Description	Language
miniDFT (Quantum Espresso)	Plain-wave Density Functional Theory (DFT)	Fortran
MILC	Lattice Quantum Chromodynamics (QCD). Sparse matrix inversion, CG	C
GTC-P	Particle-in-cell magnetic fusion	С
UMT	Unstructured-Mesh deterministic radiation Transport	C/C++/Fortran
SNAP	Neutron particle transport application	Fortran
PENNANT	Unstructured finite element	С
Meraculous	De novo genome assembly	UPC
MiniPIC	Particle in cell for accelerators	C++
HPCG	High Performance Conjugate Gradient	С

Goals and Objectives for the NERSC-9 Project

- 1. Provide a significant increase in computational capabilities over the Edison system, at least 16x on a set of representative DOE benchmarks
- 2. Platform needs to meet the needs of extreme computing and data users by accelerating workflow performance
- Platform should provide a vehicle for the demonstration and development of exascale-era technologies
- 4. Delivery in the 2020 time frame

NERSC-9 Will Provide Capabilities for DOE Data-Intensive Users in 2020

- NERSC-9 will build upon the successes of the data different components of Cori
- End to end workflow requirements and performance are critical for the design and optimization of the system
- Overall goal is to enable seamless data motion with dynamic allocation and scheduling of resources
 - Enable first steps towards exascale-era storage system
 - Vendor community excited about engagement and collaboration opportunities

APEX 2020 – NRE on the Path the Exascale

- The APEX 2020 systems NRE topics will target areas that
 - achieve higher application performance,
 - improve support for data-intensive computing, and,
 - enable greater ease of use

by advancing new technologies on the path to the exascale systems in 2023

- The Crossroads and NERSC-9 platforms NRE topics are
 - Technologies for the exploration of new and novel programming models concepts
 - A platform integrated storage system that supports new models for moving and managing data seamlessly
 - Systems with scalable management capabilities to enhance the reliability, resilience, power and energy usage characteristics

Summary

- NERSC-9 will be 2020 machine that meets the needs of all NERSC users
- NERSC will continue its NESAP program in support of NERSC-9
- NERSC will partner with vendors on Non-Recurring Engineering projects to maximize the usability and performance of the machine

Questions?

LANL • LBNL • SNL

The Application Transition Program is designed to continue users on the path to exascale

- Technical specifications asks for Center of Excellence
 - Establishment of a collaboration between the Labs, the chosen OEM, and key technology providers, e.g. processor, is essential to meet the goals of the making efficient use of the platform in a timely manner
- Center of Excellence (CoE) based upon previous DOE efforts
 - NERSC Exascale Scientific Applications Program (NESAP)
 - CAAR & ESP programs at ORNL & ANL
- Center of Excellence (CoE) leverages some or all of:
 - SSI metric applications
 - NERSC Exascale Scientific Applications Program (NESAP)
 - Select applications expected to use the machine shortly after operational readiness/acceptance

The Application Transition Program will provide development resources for users

- Early access to key technologies and programming environments is essential for application transition
 - Programming environment is crucial
- Access to emulation and simulation capabilities as early as possible
 - key contribution of technology providers
- Early Access Development System
 - One or more iterations of increasing scale
 - Eventually 2-10% of final system size
- Development test beds
 - To investigate select advanced technology areas
 - E.g. Network, power management, burst buffer
 - Same or different composition of hardware depending on topic

APEX Non Recurring Engineering (NRE): Philosophy

- Technical Specifications ask for NRE proposals
- NRE contracts potentially 10-15% of platform budgets
- Other topics that have potential to impact path to exascale will be considered
- Focus on topics that provide added value beyond planned vendor roadmap activities
- NRE collaborations will have impact on followon platforms procured by the U.S. Department of Energy's NNSA and Office of Science.

