


tails the requirements of scientific applications that could
potentially benefit from cloud computing. We provide an
overview of the Magellan testbed in Section 3 and discuss
challenges in operating cloud software stacks. In Section 4,
we describe the early science adopters of cloud technologies
and discuss the impact of these technologies on application
design decisions. Section 5 provides answers to a number of
key questions related to applicability of cloud computing for
scientific workflows. Section 6 details related work, and we
conclude in Section 7.

2. OVERVIEW
The National Institute of Standards and Technology (NIST)

definition of cloud computing describes it as a model for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction [25]. Scientific environments at
high performance computing (HPC) centers today provide
a number of these key features, including resource pooling,
broad network access, and measured services based on user
allocations. Cloud computing introduces a new usage or
business model and additional new technologies and fea-
tures. Users with applications that have more interactive
needs could benefit from on-demand, self-service environ-
ments and rapid elasticity through the use of virtualiza-
tion technology, and the MapReduce programming model
to manage loosely coupled application runs.

The Magellan team has been working with user groups
interested in using cloud computing resources. In this sec-
tion, we detail some of the unique characteristics that im-
pact science clouds. The needs of science user groups have
influenced system software decisions at both sites and also
helped us identify gaps in the middleware and software.

2.1 Computational Models
Scientific workloads can be classified into three broad cat-

egories based on their resource requirements: large-scale
tightly coupled computations, mid-range computing, and
high throughput computing. In this section, we provide a
high-level classification of workloads in the scientific space
based on their resource requirements and delve into the de-
tails of why cloud computing is attractive to these applica-
tion spaces.

Large-Scale Tightly Coupled. These are complex sci-
entific codes generally running at large-scale supercomput-
ing centers across the nation. Typically, these are MPI codes
using a large number of processors (often in the order of
thousands) and may have long-running jobs. These jobs
are serviced at supercomputing centers through batch queue
systems. Users wait in a managed queue to access the re-
sources requested, and their jobs are run when the required
resources are available and no other jobs are ahead of them
in the priority list. Most supercomputing centers provide
archival storage and parallel file system access for the stor-
age and I/O needs of these applications. Our earlier work
shows that this class of applications takes a performance hit
when working in virtualized cloud environments [15].

Mid-range Tightly Coupled. These applications run
at a smaller scale than the large-scale jobs. There are a
number of codes that need tens to hundreds of processors.
Some of these applications run at supercomputing centers

and backfill the queues. More commonly, users rely on small
compute clusters that are managed by the scientific groups
themselves to satisfy these needs. These mid-range applica-
tions are good candidates for cloud computing even though
they might incur some performance hit.

High Throughput. Some scientific explorations are per-
formed on the desktop or local clusters and have asynchronous,
massively independent computations. Even in the case of
large-scale science problems, a number of the data pre- and
post-processing steps, such as visualization, are often per-
formed on the scientist’s desktop. The increased scale of
digital data due to low-cost sensors and other technologies
has resulted in the need for these applications to scale [22].
These applications are often penalized due to scheduling
policies used at supercomputing centers. The requirements
of such applications are similar to those of the Internet appli-
cations that currently dominate the cloud computing space,
but with far greater data storage and throughput require-
ments. These workloads may also benefit from the MapRe-
duce programming model by simplifying the programming
and execution of these class of applications.

2.2 On-demand Customized Virtual Environ-
ments

The “Infrastructure as a Service” (IaaS) facility commonly
provided by commercial cloud computing addresses a key
shortcoming of large-scale grid and HPC systems; that is,
the relative lack of application portability. This issue is
widely cited as a key failure of grid systems, where a single
software stack is deployed across systems distributed across
geographic locales as well as organizational boundaries. A
key design goal of these unified software stacks is provid-
ing the best software for the widest range of applications.
Unfortunately, scientific applications frequently require spe-
cific versions of infrastructure libraries; when these libraries
aren’t available, applications may run poorly or not at all.
For example, the Supernova Factory project that is building
tools to measure the expansion of the universe and energy
has a large number of custom modules [3]. The complexity
of the pipeline makes it necessary to have specific library
and OS versions and ends up being a barrier to making
use of large resources that might become available. User-
customized operating system images provided by applica-
tion groups tuned for a particular application would address
this issue.

2.3 Resource Availability and Quality of Ser-
vice

Some scientific users prefer to run their own private clus-
ters for a number of reasons. They often don’t need the con-
currency levels achievable at supercomputing centers, but do
require guaranteed access to resources for specific periods of
time. They also often need a shared environment between
collaborators since setting up the software environment un-
der each user space can be tedious and time consuming, and
clouds might be a viable platform to satisfy this need.

2.4 ScienceClouds: Best of Both Worlds
Science users have used HPC centers for a number of years

and often have large volumes of legacy data stored in cur-
rent systems. Users are also interested in a private cloud
that would enable them to get the benefits of cloud envi-
ronments in conjunction with other facilities provided at su-



percomputing centers. For example, HPC systems typically
provide high-performance parallel file systems that enable
parallel coordinated writes to a shared filesystem with high
bandwidth and capacity. HPC centers also typically pro-
vide an archival storage system to archive critical output
and results.

3. MAGELLAN TESTBED
The user requirements for cloud computing are diverse,

ranging from access to custom environments to the MapRe-
duce programming model. These diverse requirements guided
our flexible software stack at both sites - Argonne and NERSC.
Users have access to customized virtual machines through
Eucalyptus, enabling users to port between commercial providers
and the private cloud, along with a Hadoop installation
that allows users to evaluate the MapReduce programming
model and the Hadoop Distributed File System. NERSC
also provides access to a traditional batch cluster environ-
ment. This environment is used to establish baseline per-
formance and collect data on workload characteristics for
typical mid-range science applications that are considered
suitable for cloud computing.

In this section, we detail our hardware and system soft-
ware setup, as well as discuss our experiences with virtual-
ization software and Hadoop.

3.1 Testbed Setup
The Magellan testbed hardware has been architected to

facilitate exploring a variety of usage models and under-
standing the impact of various design choices. As a result,
the testbed incorporates a diverse collection of hardware
resources, including compute nodes, large-memory nodes,
GPU servers, and various storage technologies. Eventually,
Magellan is expected to be connected to the 100 Gb network
planned for deployment by the DOE-SC-funded Advanced
Networking Initiative.

Both Argonne and NERSC deployed compute clusters based
on IBM’s iDataplex solution. This solution is targeted to-
wards large-scale deployments and emphasizes energy effi-
ciency, density, and serviceability. The configuration for the
iDataplex systems are similar at both sites. Each compute
node has dual 2.66 GHz Intel Quad-core Nehalem proces-
sors, with 24 GB of memory, a local SATA drive, 40Gb In-
finiband (4X QDR), and 1 Gb Ethernet with IPMI. The sys-
tem provides a high-performance InfiniBand network which
is often used in HPC-oriented clusters, but is not yet com-
mon in mainstream commercial cloud systems. Since the
network has such a large influence on the performance of
many HPC and mid-range applications, the ability to ex-
plore the range of networking options from native InfiniBand
to virtualized Ethernet was an important design goal. The
testbed is architected for flexibility and to support research.
The hardware deployed is similar to high-end hardware in
HPC clusters, thus catering to scientific applications
Argonne. The Magellan testbed at Argonne includes com-
putational, storage, and networking infrastructure. There is
a total of the 504 iDataplex nodes described above. In ad-
dition to the core compute cloud, Argonne’s Magellan has
three types of hardware that one might expect to see within
a typical HPC cluster: Active Storage servers, Big Memory
servers, and GPU servers. There are 200 Active Storage
servers, each with dual Intel Nehalem quad-core processors,
24 GB of memory, 8x500 GB SATA drives, 4x50 GB SSD,

and a QDR InfiniBand adapter. There are 15 Big Mem-
ory servers; each has 1 TB of memory, along with 4 Intel
Nehalem quad-core processors, 2x500 GB local disks, and
a QDR InfiniBand adapter. There are 133 GPU servers,
each with dual 6 GB NVidia Fermi GPU, dual 8-core AMD
Opteron processors, 24 GB memory, 2x500 GB local disks,
and a QDR InfiniBand adapter. Finally, there is 160 ter-
abytes (TB) of global storage. In total, the system has over
150 TF of peak floating point performance with 8,240 cores,
42 TB of memory, 1.4 PB of storage space, and a single
10-gigabit (Gb) external network connection.

The Argonne Magellan testbed uses the Argonne-developed
tools bcfg2 [4] and Heckle [13] to provide advanced, bare-
metal provisioning (”Hardware as a Service” or HaaS) and
configuration management. The core compute servers have
numerous cloud software stacks installed in various stages
of availability to the users. There is always some portion of
the cloud configured as a public cloud running a software
stack that provides an Amazon EC2-compatible API. The
public cloud is open to all users for science, development,
and testing. In addition, a portion of the compute hardware
has been set up as a Nimbus cloud, also open to all users.
The remainder of the compute resources are dedicated to de-
velopment, and are usually running various cloud software
stacks at different times, including Open Stack, Eucalyptus
2.0, Ubuntu Enterprise Cloud [UEC] v1, and OpenNebula.
A portion of the Active Storage servers are configured as a
persistent HADOOP cluster. The remainder are configured
as HaaS and are part of the raw provisioning pool, along
with the GPU and Big Memory servers.
NERSC. The NERSC Magellan test bed also provides a
combination of computing, storage, and networking resources.
There are 720 iDataplex nodes as described earlier. The
total system has over 60 TF of peak floating point perfor-
mance. The InfiniBand fabric was built using InfiniBand
switches from Voltaire. Since the system is too large to fit
within a single switch chassis, multiple switches are used,
and they are connected together via 12x QDR links (120
Gb/s) configured as a fully connected mesh topology. This
topology is less expensive than a traditional, full fat tree
network yet still provides a relatively high bisection band-
width. A variety of storage hardware has also been deployed,
including nearly 1 PB of disk storage, archival storage, and
two classes of flash storage. The system has approximately
8 TB of high-performance flash storage capable of deliv-
ering 20 GB/s of aggregate bandwidth. There is also 10
TB of consumer-grade SATA storage installed in 40 of the
compute nodes running Hadoop. While flash storage is not
typically found in current cloud offerings, it is an emerging
technology that can potentially play an important role for
data-intensive computing problems and will likely appear
in future cloud offerings. Finally, the Magellan Testbed at
NERSC also has 18 service nodes that are connected to the
WAN via 10Gb.

NERSC is using IBM’s xCAT[33] and Adaptive Com-
puting’s Moab Adaptive Computing Suite to provision and
manage the Magellan testbed. xCAT can provision nodes
using a variety of methods, including diskless, disk-full, and
hybrid. The framework can also utilize the IPMI manage-
ment interface to automatically power on and off nodes. In
addition to providing command-line tools, xCAT also pro-
vides an API that can be used by external resource man-
agers such as Moab. Coupling xCAT with Moab will enable



NERSC to explore other models of delivering capabilities as-
sociated with cloud computing and dynamically repurpose
resources. This includes on-demand bare metal provision-
ing of various OS images, which may be a better model for
providing access to custom images for scientific workloads.

3.2 Virtualization Software
At the start of the project, Eucalyptus 1.6.2 had the most

advanced feature set and hence was our logical choice for
evaluation of user instantiated virtualized environments. Since
then, other offerings such as OpenStack and upgrades to Eu-
calyptus have become available. In this section, we detail
our experiences with these software packages.

3.2.1 Eucalyptus 1.6.2
The Eucalyptus project provides an open source plat-

form for conducting cloud computing research. It is API-
compatible with Amazon’s EC2. Eucalyptus supports nearly
all the core features of EC2, including creating virtual in-
stances, elastic block storage (EBS), S3, and elastic IP ad-
dresses. Since the software is open-source, it is possible to
make modifications and add hooks and callouts to gather
data. This makes it a useful tool for exploring cloud com-
puting for DOE. Eucalyptus provides a convenient platform
for creating and managing a private cloud platform for mul-
tiple users. However, Eucalyptus, like much of the cloud
computing software, is still in its infancy and has design
principles that may not be compatible with supercomput-
ing center policies. In addition, bugs of various flavors have
been encountered.
Scalability. Eucalyptus permits a cloud system to include
a number of cluster controllers. Our current deployment is
limited to a single cluster controller that exposes a number
of scaling problems. The Eucalyptus network model for-
wards all traffic from the virtual machines running in each
cluster through the cluster controller. This setup allows the
system to implement security groups more easily; however,
it also creates a potential network bottleneck for the run-
ning virtual machines. Even a moderate amount of network
traffic spread across many virtual machines can saturate the
cluster controller’s network bandwidth. Testing of the vir-
tual machine capacity revealed that Eucalyptus had a limit
to the number of simultaneously running virtual machines
between 750 and 800. The limit is related to the message
size limit in a communication protocol and enforces a hard
limit to the number of simultaneously running virtual ma-
chines. Also, many of the cluster controller operations are
iterative. While this setup does not define hard limits for
the system, it does mean that as the cluster is extended and
node controllers are added, certain operations take longer
to complete. When the cluster was expanded to more than
200 node controllers, there was a noticeable deterioration of
performance during certain operations. For instance, termi-
nating large numbers of running virtual machines can cause
delays for other operations such as new virtual machine re-
quests.
Image Management. In today’s environments, sites man-
age the operating system and some base software packages,
and scientists manage the specific application software and
data. This division clearly demarcates the responsibility of
system and application software maintenance between the
site system administrators and the users. In the virtual ma-
chine model, users need to have an understanding of the OS

administration. Support lists at both sites have received a
large quantity of e-mails that pertain to basic system ad-
ministration questions. In the long term, this will impact
the user support model available at the sites. Users need
to know how to create, upload, and register images, and
have system administration skills on the OS in the virtual
machine.

Although users manage their virtual machine images, the
kernel and ramdisk are registered and managed by the sys-
tem administrators, allowing sites to control kernel versions.
System administrators now need to manage a large number
of kernels and OS versions; this can be tedious and error
prone.
Infrastructure. Eucalyptus uses a number of system ser-
vices such as DHCP. It is difficult to get Eucalyptus to co-
exist with other services running on the system, since Eu-
calyptus and other similar cloud software assume they have
complete control over system software in the cluster. The
virtual machines that are provided also have limited sup-
port to offer features such as parallel file systems and In-
finiband that are commonly used by scientific applications.
Furthermore, the software stack needs a fair amount of tun-
ing to get the optimal feature set and performance from the
system. For example, an earlier version of KVM (kvm-83-
maint-snapshot-20090205 ) used on the NERSC testbed did
not expose the advanced Nehalem CPU instructions in the
virtual machine.
Security. Deploying a new resource allocation model al-
ways requires a risk analysis of the new model in order to
determine if modifications to existing resource protections
will be required. Our analysis is based on understanding
the typical use scenario of these technologies. A user will
select a system image to boot on one or more virtual ma-
chines using Eucalyptus. Within the context of that virtual
machine, the user is root and has complete administrative
control. This is a significant deviation from current HPC
environments. HPC centers tasked with operating a scien-
tific cloud will not be able to control the operating system
images running within the virtual machines. Users of this
system will come with diverse backgrounds; however, they
are unlikely to be well versed in managing operation system
configurations on their virtual machines. This introduces a
risk that, while not completely unique to clouds, is not a
prevalent risk in many HPC cluster operations.

In addition, users might produce and make available hos-
tile system images for use within the cloud. These images
can be purposefully hostile or merely benignly so. Purpose-
fully hostile images would be images customized and out-
fitted with malicious software that would allow the mali-
cious user to have control of any virtual machine instances
started with the given image. Benignly hostile machine im-
ages could be created by a non-malicious user inadvertently.
These images could have a vulnerable service installed, or
they could be configured poorly, allowing their compromise
by malicious individuals.

Current open source cloud software stacks (e.g., Eucalyp-
tus, OpenStack) allow end users to manage the firewall con-
duits that control access to their virtual machine instances.
A user, without proper understanding of the impact of their
choice, could allow any system on the Internet to interact
with their virtual machines. This opens the machines up to
attack and can ultimately lead to compromise.

All of these scenarios are a shift from most existing HPC



cluster environments that have set access controls, set menus
of image options, and do not typically allow users to have
full root privileges on their compute nodes. Network activity
monitoring is the key to mitigating these risks, since without
access to running virtual machine instances, it is a challenge
for a cloud operations team to identify problems directly on
the virtual systems themselves. Network monitoring can be
used to identify system misconfigurations, suspicious traffic,
and any potentially compromised systems within the VM
population. Given these constraints, we have identified a
number of strategies and implemented one or more at each
site:

• Run Intrusion Detection Systems at strategic points
in the cloud system network to identify and study the
vast majority of network traffic.

• Add additional host-based firewall rules to protect in-
frastructure from VMs.

• Continuously run ssh scans to quickly pick up accounts
with bad passwords and instances with poorly config-
ured remote access services.

• Provide documentation and educate users on systems
administration best practices to assist with configuring
their images properly.

• For site-supported images, run Nessus on the system.
In addition, run scans often and look for hostile or
vulnerable services as well as unexpected changes.

• For user-provided images, ask for Syslog to copy mes-
sages to the internal server and perhaps run instru-
mented SSHD.

Allocation and Accounting. The open source version of
Eucalyptus does not provide an allocation and accounting
model. Thus, it is impossible to ensure fairness or enforce
any allocation policies among a group of users who might be
trying to launch virtual machines.
Logging and Monitoring. Eucalyptus has verbose log-
ging that could be beneficial to tracking events occurring
on the systems. However, the monitoring to understand the
behavior of the virtual machines, detect failure, and rectify
failure events at the service level is limited. Eucalyptus 1.6.2
also has limited ability to recover gracefully from system-
level failures. For example, restarting the Cloud Controller
would typically result in the loss of IP address assignments
for running instances and require all running instances to be
terminated in order to cleanly recover.
Portability. Eucalyptus provides an Amazon-compatible
user API to manage virtual machines. This enables easy
portability of tools and applications between the public and
private cloud. However, moving images between the two
systems still requires a fair amount of IT expertise and can
be time consuming and tedious.

3.2.2 Alternate Stacks: OpenStack and Eucalyptus
2.0

Eucalyptus is the leading open source software stack that
helps set up private clouds. However, there are a number of
gaps in the software features, such as accounting, allocation,
and security policies that will need to be investigated and

implemented for science clouds. We are investigating Eu-
calyptus 2.0 and other cloud software stacks such as Open-
Stack. In early testing, Eucalyptus 2.0 has shown improved
stability and networking capabilities, leading to improved
startup and shutdown times of the virtual machines.

OpenStack is a joint project between the National Aero-
nautics and Space Administration (NASA) and Rackspace
that implements cloud compute and virtualized scalable stor-
age components. OpenStack provides better configuration
support, since the user details are stored in a database.
OpenStack offers greater flexibility. For example, it allows
roles to be assigned to users and projects can be assigned
subnets. Unlike Eucalyptus, users are also allowed to regis-
ter kernels and ramdisk images.

As cloud computing software matures in the next few
years, problems related to system tooling and the lack of
stability are likely to improve. However, the need for users
to understand basic system administration and security poli-
cies will remain, and sites moving to cloud computing will
need to take this additional burden for the users into con-
sideration.

3.3 Hadoop
Hadoop is open source software that provides capabili-

ties to harness commodity clusters for distributed process-
ing of large data sets through the MapReduce [7] model.
The Hadoop streaming model allows one to create map-
and-reduce jobs with any executable or script as the mapper
and/or the reducer. This is the most suitable model for sci-
entific applications that have years of code in place capturing
complex scientific processes.

The Hadoop File System (HDFS) is the primary storage
model used in Hadoop. HDFS is modeled after the Google
File system and has several features that are specifically
suited to Hadoop/MapReduce. Those features include ex-
posing data locality and data replication. Data locality is
a key aspect of how Hadoop achieves good scaling and per-
formance: Hadoop attempts to locate computation close to
the data. This is especially true in the map phase, which is
often the most I/O-intensive phase.

Both sites have Hadoop setups that are being used by
different communities. In this section, we identify some of
the core design features that are likely to impact its use in
scientific environments.
Security Model. Hadoop 0.20 runs all jobs as user hadoop.
This results in a situation where users may not be able to
access non-HDFS files generated by the job. Thus, the per-
missions need to be fixed after the application completes,
and the world-readable files make it hard to ensure data
privacy for the end users. A recently released version fixes
this model using Kerberos.
File System Access. The ability of Hadoop’s MapReduce
framework to use HDFS’s data locality features can be useful
to applications that need to process large volumes of data.
However, Hadoop considers only the data locality for a sin-
gle file and does not handle applications that might have
multiple input sets. HDFS also does not expose a POSIX
interface, which makes it difficult for legacy applications to
leverage the file system directly, potentially compromising
the data locality speedups that might be possible.
Configuration. The Hadoop configuration has a number
of site-specific and job-specific parameters that are hard to
tune to achieve optimal performance.



4. APPLICATION MANAGEMENT
In this section, we detail the case studies of some early

applications running on Magellan and discuss the challenges
and general design decisions that are impacted by the cloud
characteristics.

4.1 Application Case Studies
A diverse set of applications are running on the Magel-

lan resources at both sites. Our early case studies have
been more in the space of scientific applications that are
largely data parallel since they are good candidates for cloud
computing. These applications are primarily throughput-
oriented (i.e., there is no tight coupling between tasks). Sec-
ond, the data requirements are large but well constrained.
Finally, some of these applications have complex software
pipelines and thus can benefit from customized environ-
ments in clouds. Cloud computing systems typically provide
greater flexibility to customize the environment when com-
pared with traditional supercomputers and shared clusters.

4.1.1 Genome Sequencing of Soil Samples
Magellan resources at both Argonne and NERSC were

used to perform genome sequencing of soil samples pulled
from two plots at the Rothamsted Research Center in the
UK. The specific aim of this project was to understand the
impact of long-term plant influence (rhizosphere) on micro-
bial community composition and function. Two distinct
fields were selected to understand the differences in micro-
bial populations associated with different land management
practices.

The demonstration used Argonne’s MG-RAST metage-
nomics analysis software to gain a preliminary overview of
the microbial populations of these two soil types (Grassland
and Bare-Fallow). The MG-RAST software draws on ideas
for distributing non-coupled computations from volunteer
computing projects such as Boinc. It distributes work over
HTTP with a DHCP-style lease, making the approach fault
tolerant and capable of targeting multiple platforms and ar-
chitectures simultaneously.

The goal of the demostration was to perform real science
in the cloud, utilizing the testbeds at both sites, and to ex-
plore potential fail-over techniques within the cloud. The
demostration used 150 nodes from Argonne’s Magellan to
perform the primary computations over the course of a week,
with NERSC’s Magellan acting as a failover cloud. Half a
dozen machines on Argonne’s Magellan were intentionally
failed. Upon detecting the failures, the software automati-
cally started replacement machines on the NERSC Magel-
lan, allowing the computation to continue with only a slight
interruption.

The same virtual machine image was used on both the
Argonne and NERSC Magellan clouds. However, this was
not a simple port and required some changes to the image.
The instance uses all eight cores on each cloud node and
about 40% of the available memory. The demostration was
a single run within the Deep Soil project and represents
only 1̃/30th of the work to be performed. The project is
continuing to run on the Magellan cloud.

This demonstration showed the feasibility of running a
workflow across both the cloud sites, using one site as a
fail-over resource.

4.1.2 Integrated Metagenomics Pipeline

The Integrated Microbial Genomes (IMG) system hosted
at the DOE Joint Genome Institute (JGI) supports analy-
sis of microbial community metagenomes in the integrated
context of all public reference isolate microbial genomes.
The content maintenance cycle for data involves running
BLAST for identifying pair-wise gene similarities between
new metagenome and reference genomes, where the refer-
ence genome baseline is updated with new (approximately
500) genomes every four months. This processing takes
about three weeks on a Linux cluster with 256 cores. Since
the size of the databases is growing, it is important that the
processing can still be accomplished in a timely manner. The
primary computation in the IMG pipeline is BLAST, a data
parallel application that does not require communication be-
tween tasks and thus has similarities with traditional cloud
applications. The need for on-demand access to resources
makes clouds an attractive platform for this workload.

The pipeline is primarily written in Perl, but it includes
components written in Java, as well as compiled compo-
nents written in C and C++. The pipeline also uses several
reference collections (typically called databases), including
one for RNA alignment and a periodically updated reference
database for BLAST. The pipeline and databases are cur-
rently around 16 GB in size. This does not include Bio-perl,
BLAST, and other utilities. The pipeline was run across
both Magellan sites through Eucalyptus. A simple task
farmer framework was used to distribute workload across
both sites. As virtual machines came up, a client would
query the main server for work and run the computation.

The IMG pipeline has also been tested in the Hadoop
framework to manage a set of parallel BLAST computations.
The performance across a HPC machine, virtual machines,
and a Hadoop cluster was found to be comparable (within
10%), making this a feasible application for clouds as well.

4.1.3 Climate 100
Climate scientists are better able to understand global cli-

mate change and evaluate the effectiveness of possible miti-
gations by generating and sharing increasingly large amounts
of data. The Climate 100 data consists of on the order of
a million files that average a few hundred megabytes each.
Climate simulations running on large-scale supercomputers
are used to generate these data sets. However, the anal-
ysis of these simulations can be performed on a variety of
resources and are well-suited for cloud resources. Climate
100 simulation analysis has been run on virtual machines on
Magellan [26], as well as using Hadoop. The results from
this endeavor demonstrated that virtualized environments
had portability benefits, and the performance made it a vi-
able option for such large-scale data analysis. The loosely
coupled analysis runs are well-suited for the diverse cloud
environments.

4.1.4 STAR
Another early application on Magellan is the STAR nu-

clear physics experiment. STAR studies fundamental prop-
erties of nuclear matter from the data collected at Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider. STAR
needs on-demand resources for processing data in real-time
and that makes cloud resources an attractive platform for
this group. Previously, STAR has demonstrated the use of
cloud resources both on Amazon and at other local sites [11,
21]. STAR is using NERSC Magellan resources to process



Figure 1: A plot of the status of processing near real-time
data from the STAR experiment using Magellan at NERSC
over a three-day period. The yellow circles show the number
of instances running, the green triangles reflect the total load
average across the instances, and the red squares plot the
number of running processing tasks. (Image courtesy of Jan
Balewski, STAR Collaboration).

near real-time data from Brookhaven for the 2011 run data.
The need for on-demand access to resources to process real-
time data and a complex software stack makes it useful to
consider clouds as a platform for this application. Figure 1
shows the virtual machines used and corresponding aggre-
gated load for a single run over three days.

4.2 Application Design and Management
Cloud computing promises to be useful to scientific ap-

plications due to advantages such as on-demand access to
resources and control over the user environment. However,
numerous challenges exist in terms of composing the appli-
cation programming model, designing and constructing im-
ages, distributing the work across compute resources, and
managing data.

4.2.1 Programming Model
Cloud computing has an impact on the programming model

and other programming aspects of scientific applications.
Scientific codes running at supercomputing centers are pre-
dominantly based on the MPI programming model. Ad hoc
scripts and workflow tools are also commonly used to com-
pose and manage such computations. Tools like Hadoop
provide a way to compose task farming or parametric stud-
ies. Legacy applications are limited to using the streaming
model that may not harness the full benefits of the MapRe-
duce framework. The MapReduce programming model im-
plementation in Hadoop is closely tied to HDFS, and its
non-POSIX compliant interface is a major barrier to adop-
tion of these technologies. In addition, frameworks such as
Hadoop focus on each map task operating on a single inde-
pendent data piece, and thus only data locality of the single
file is considered.

4.2.2 Customizable Environments

One of the advantages that virtual environments provide
is the ability to customize the environment and port it to
different sites (e.g., CERN VM [6]). However, with that
flexibility comes the responsibility and effort of creating and
maintaining the environment. Tools exist to bundle a run-
ning operating system and upload it to the cloud system.
However, some customization is typically required. Users
need to have an understanding of standard Linux system
administration, including managing ssh daemons, ntp, etc.
Furthermore, debugging and testing can be tedious, since
it often requires repacking and booting instances to verify
the correct behavior. This also requires experimentation to
determine what applications and data are best to include in
the image or handle through some other mechanism. The
simplicity of bundling everything in the image needs to be
balanced with the need to make dynamic changes to ap-
plications and data. This process is complex and often re-
quires users to carefully analyze what software pieces will
be required for their application, including libraries, utili-
ties, and supporting datasets. If the application or support-
ing datasets are extremely large or change quickly, then the
user stores the data outside of the image due to limits on
image size and its impact on virtual machine boot-up times.

4.2.3 Managing Computation
Another challenge in using cloud systems is developing a

mechanism to distribute work. This is complicated by the
fact that cloud systems like AWS are inherently ephemeral
and subject to failure. Applications must be designed to dy-
namically adjust to compute nodes entering and leaving the
resource pool. It must be capable of dealing with failures and
rescheduling work. In traditional clusters, batch systems are
routinely used to manage workflows. Batch systems such as
Torque, Sun GridEngine, and Condor can and have been de-
ployed in virtualized cloud environments [29, 16]. However,
these deployments typically require system administration
expertise with batch systems and an understanding of how
to best configure them for the cloud environment. Grid tools
can also play a role, but they require the user to understand
and manage certificates and deploy Globus. To lower the
entry barrier for scientific users, Magellan personnel have
developed and deployed Torque and Globus-based system
images.

Each of our applications have used different mechanisms
to distribute work. MG-RAST and the IMG task farmer
are examples of locally built tools that handle this prob-
lem. Hadoop might be run on top of virtual machines for
this purpose; however, it will suffer from lack of knowledge
of data locality. STAR jobs are embarrassingly parallel ap-
plications (i.e., non-MPI codes), where each job fits in one
core and uses custom scripts to handle workflow and data
management.

4.2.4 Data Management
The last significant challenge is managing the data for the

workload. This includes both input and output data. For
the bioinformatic workloads, the input data includes both
the new sequence data as well as the reference data. Some
consideration has to be given to where this data will be
stored and read from, how it will be transported, and how
this will scale with many worker nodes. The users would
typically have access to a cluster-wide file system on a tra-



ditional batch cluster. However, with EC2-style cloud sys-
tems, there is a different set of building blocks: volatile local
storage, persistent block storage associated with a single in-
stance (EBS), and a scalable put/get storage system (S3).
The image also can be used to store static data. Each of
these options has differing performance characteristics that
are dependent on applications. Thus, the choice of storage
components depends on the volume of data and the access
patterns (and cost, in the case of EC2).

4.2.5 Cross-Site
One key benefit of cloud computing is its ability to eas-

ily port the software environment as virtual machine images.
This enables users to utilize resources from different comput-
ing sites. This allows scientists to expand their computing
resources in a steady-state fashion, to handle burst work-
loads, or to address fault tolerance.

Both MG-RAST and the IMG pipeline were run success-
fully across both sites. However, application scripts were
needed to handle registering the images at both sites, man-
aging discrete image IDs across the sites, and handling dis-
tribution of work and associated policies across the sites.

5. DISCUSSION
The primary goal of Magellan is to understand if cloud

computing can benefit science. In this section, we detail
our experiences to date on a number of key questions that
pertain to the applicability of cloud computing to scientific
applications.
What applications can efficiently run on a cloud?

Virtualized cloud environments are useful for a number of
applications that require customizable software stacks. In
previous efforts [15], we have shown that scientific appli-
cations with minimal communication and I/O can run ef-
ficiently in virtualized cloud environments. However, high-
end, tightly coupled applications are impacted significantly
by the performance and reliability characteristics of today’s
clouds. Furthermore, porting and managing application stacks
on cloud environments still have a number of open challenges
that will need to be addressed by both computer science re-
search, as well as specific scientific group solutions. Thus,
while there might be some applications that can benefit from
clouds, exact efficiency will vary, depending on the applica-
tion characteristics.
Are cloud computing programming models such as
MapReduce (Hadoop) effective for scientific appli-
cations?

The explosion of sensor data in the last few years has re-
sulted in a class of scientific applications that are loosely
coupled and data intensive. These applications are scal-
ing up from desktops and departmental clusters and now
require access to larger resources. These are typically high-
throughput, serial applications that do not fit into the schedul-
ing policies of many HPC centers. They also could benefit
greatly from the features of the MapReduce programming
model. In our early studies, Hadoop, the open source im-
plementation of MapReduce and HDFS, the associated dis-
tributed file system, have proven to be promising for some
scientific applications. The built-in replication and fault tol-
erance in Hadoop is advantageous for managing this class of
workloads. In Magellan, we have also experimented with
running Hadoop through a batch queue system. This ap-
proach can enable users to reap the benefits of Hadoop while

running within the scheduling policies geared towards large
parallel jobs.
Is it practical to deploy a single logical cloud across
multiple sites?

It is possible to have a single logical cloud across multiple
sites, but extensions to existing software components will be
necessary. The single logical view can be built either in the
application view or the site level.

Our experiences with the MG-RAST and IMG pipelines
show how applications can effectively leverage multiple cloud
sites to address resource needs. Co-allocation of cloud sites
to effectively harness resources from a single logical cloud
can be handled by application middleware. However, users
need to manage images, metadata associated with virtual
machines, and running instances of the virtual machines dy-
namically, since there are no simple tools available for seam-
less access of resources across sites.

Cloud software such as Eucalyptus has the ability to run
multiple clusters under a single logical cloud. This could be
used to operate a single logical cloud across multiple physi-
cal sites. However, there are gaps in current cloud software
that cannot adequately represent some of the complicated
policies that are necessary for such cross-site logical clouds.
Cluster software such as Moab and Platform are also explor-
ing cloud alternatives that might enable scheduling policies
that would facilitate such cross-site integration
Can scientific applications use a data-as-a-service or
software-as-a-service model?

Scientific groups have complicated software dependencies,
and cloud technologies such as virtualization provide an easy
way to package and distribute entire software stacks that
can then be easily deployed at multiple sites without worry-
ing about operating system and other package dependencies.
For example, the ATLAS community uses the CERNVM [6]
to package and distribute the ATLAS software. Scientists
would often like to share observational and processed data,
as well as software environments, with collaborators. Clouds
can also facilitate deploying science gateways - web fron-
tends that provide access to specific scientific computations
and data. Software-as-a-service and data-as-a-service pro-
vide convenient models to share software and data with a
large number of collaborators.
What are the security implications of user-controlled
cloud images?

User-controlled images introduce additional security risk
when compared to traditional login/batch-oriented environ-
ments, and they require a new set of controls and monitoring
to secure. Sites typically rely on OS-level controls to imple-
ment many security policies. Most of these controls must be
shifted into the hypervisor or alternative approaches must
be employed. Implementing some simple, yet key security
practices and policies on private clouds, such as running an
intrusion detection system (IDS), capturing syslog data from
the virtual machines, and constant monitoring, can avert a
large number of the risks.

Moving forward, we stress two related, but ultimately dif-
ferent directions. The first is research focused: What can we
do to explore changes in the environment that are substan-
tially different from the current environment? The second
is operational: How can we do better security overall? An
example that strides the boundary between the two is an
IDS that is kept aware of changes made to the configura-
tion of Eucalyptus (such as a new cluster group starting)



and applies local security policy to both the changes and
inhabitant behaviors.
What are the unique needs and features of a science
cloud?

The digital data and computational needs of scientific
applications are seeing a tremendous growth. The diverse
needs of these applications have resulted in a need to have
a multitude of high-end hardware and software solutions.
Some scientific applications can benefit from existing cloud
technologies and infrastructure. But there are certain needs
that are unique to science (below).

• Science clouds need access to parallel filesystems and
low-latency high bandwidth interconnect. Virtualized
cloud environments are limited largely by networking
and I/O available in the virtual machines. Access to
parallel file systems such as GPFS, Lustre, etc. and
low-latency, high bandwidth interconnects such as In-
finiBand within a virtual machine would enable more
scientific applications to benefit from virtual environ-
ments with minimal overheads.

• Science clouds need access to legacy data sets. Effi-
cient, easy, and cost-effective access to legacy data sets
that reside in HPC centers today is critical for appli-
cations that run in cloud environments.

• Science clouds need MapReduce implementations that
account for characteristics of scientific data and analy-
sis methods. MapReduce can be useful for data-intensive
scientific applications. However, there is a need for
MapReduce frameworks that are not closely tied to
HDFS and are available to use with other POSIX file
systems. In addition, MapReduce implementations
that account for scientific data access patterns (such
as considering data locality of multiple input files) are
desired.

• Science clouds need bare metal provisioning for ap-
plications that require custom environments but can-
not tolerate the performance hit from virtual machines.
Virtual machines are useful for end users who need spe-
cific customizable environments. However, the over-
heads of virtualization are significant for certain tightly
coupled applications. These applications could benefit
from bare metal provisioning or other approaches to
providing custom environments.

• Science clouds need preinstalled, pre-tuned application
software stacks. User-created virtual images are pow-
erful. However, there is also a need for a standard set
of base images and simple tools to reduce the entry
barrier for scientists.

• Science clouds need customizations for site-specific poli-
cies. Cloud software solutions will need customiza-
tion to handle site-specific resource allocation, security
policies, accounting, and monitoring.

On-demand access to unlimited resources has been touted
as an attractive feature of clouds for science. However, this
is far from true in practice. Virtual machine startup over-
heads at large scale can impose significant delays [16]. Fur-
thermore, the promise of unlimited resources is unrealistic
for a scientific environment where scientists have an almost

endless set of experiments they would like to run. Guar-
anteed access to resources can be provided by either over-
provisioning (i.e., buying hardware for peak load and allow-
ing the resources to go idle at other times), over-committing
(where users are impacted by having limited access to re-
sources on a node), or scheduling policies that allow lower-
priority workloads to be terminated. The cloud software
stacks require more sophisticated scheduling methods that
can ensure fairness across different users and arbitration be-
tween user requests. Furthermore, on-demand access to re-
sources could be achieved at existing HPC centers by im-
plementing different resource allocation policies but would
likely impact the effective utilization of the resources. This
is similar to Amazon EC2 today, where resource alloca-
tion, performance, and availability have been reported to
be highly variable, and higher-priced services are available
for guaranteed access.

6. RELATED WORK
The Magellan project explores a range of topics that in-

cludes evaluating current private cloud software and under-
standing gaps and limitations, application software setup,
etc. To the best of our knowledge, there is no prior work
that does such an exhaustive study of various aspects of
cloud computing for scientific applications. A number of dif-
ferent groups have conducted feasibility and benchmarking
studies of running their scientific applications in the Ama-
zon cloud [28, 12, 9, 18, 20, 17]. Standard benchmarks have
also been evaluated on Amazon EC2 [24, 10, 27, 30, 32].
Our experiments show that high-end tightly-coupled appli-
cations are impacted by the performance characteristics of
current cloud environments. However the focus of this paper
is to outline our experiences and identify the gaps in current
private cloud software.

The FutureGrid project [1] provides a testbed, including
a geographically distributed set of heterogeneous comput-
ing systems that includes cloud resources. The aim of the
project is to provide a capability that makes it possible for
researchers to tackle complex research challenges in com-
puter science, whereas Magellan is more focused on serving
the needs of the science.

7. CONCLUSIONS AND FUTURE WORK
Magellan is investigating the use of cloud computing for

science at the Argonne Leadership Computing Facility and
the National Energy Research Scientific Computing Facil-
ity. The sites have deployed testbeds running a diverse
cloud software stack and identified that, while current cloud
software can be used for science clouds, there exists a need
for enhancements to provide better performance, scalability,
and stability. The paper details the case studies of running
data parallel science applications on the cloud and the use
of multi-site clouds for expandability and fault-tolerance.

Virtualized environments facilitate the custom software
environments that are required by many applications for
simplicity and portability. Large-scale data parallel scien-
tific applications benefit from the MapReduce programming
model for managing the large number of computations. The
fault tolerance and data locality ideas built into implemen-
tations such as Hadoop enhance run-time efficiency for this
class of applications.

Magellan continues to explore the suitability of cloud soft-



ware stack and technologies for science, including the cost
efficiency of cloud computing and detailed workload analy-
sis for identifying applications that can benefit from clouds.
Current cloud computing has a number of gaps and open
challenges for scientific applications that will need to be ad-
dressed in future work. Cloud software such as Eucalyptus
and Hadoop need continued work to ensure stability at large
scale and better integration with site-specific services such
as allocation, accounting, etc. Data parallel scientific ap-
plications will benefit from the MapReduce programming
model, but current implementations do not take into ac-
count the characteristics of scientific data. There is also
a limited set of tools available that facilitate and simplify
cross-site management and access of clouds. Current scien-
tific workloads at HPC centers are unlikely to be able to
leverage current cloud offerings due to the performance im-
pact. HPC centers should examine mechanisms to provide
on-demand, customized environments to fill this gap.
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