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Overview
The NERSC workload is increasingly diverse, with a growing demand for complex high
performance workflow capabilities from our user community across all scientific domains. High
performance computing (HPC) workflows interconnect computational and data manipulation
steps, and require significant computational, storage and/or network resources within. The
NERSC-10 system will integrate available new technologies and support the emerging needs in
AI and experimental/observational science to accelerate end-to-end DOE SC workflows and
enable new modes of scientific discovery through the integration of experiment, data
analysis, and simulation.

This whitepaper describes six archetypal HPC workflows that we expect to support with
NERSC-10, drawn from real workflows we anticipate on our systems. It is important to stress
that the NERSC workload is very diverse, with hundreds of such workflows running on
the system simultaneously. Some workflow steps run at close to full machine scale, and some
have large data requirements. Collectively, they will require close coupling between NERSC-10
itself, the NERSC data center and beyond. Some will be as complex as the workflows
described here, and some will be much simpler. The archetypal HPC workflows are:

1. High-performance simulation & modeling workflow (e.g., large-scale multi-physics
applications with checkpoint/restart, data post-processing, and visualization) [1-3]

2. High-performance AI (HPAI) workflow (e.g., data integration-intensive science
patterns such as training, inference, hyperparameter optimization) [4-8]

3. Cross-facility workflow: Rapid data analysis and real time steering (e.g.
time-sensitive science patterns such as superfacility, edge, and hybrid cloud)

4. Hybrid HPC-HPAI-HPDA workflow (e.g. long-term campaign science patterns,
AI-in-the-loop, AI-around-the-loop)

5. Scientific data lifecycle workflow: Interactive, data-analytics and visualization (e.g.
data integration-intensive science patterns such as Jupyter, scientific databases,
VSCode)

6. External event-triggered and API-driven workflow (e.g. time-sensitive science
patterns such as function-as-a-service, microservices)

NERSC has long-supported and will continue to advance HPC science campaigns through core
workflows that couple computational tasks and data flow (Workflows 1, 2, 3).

Although experiment to high-performance data analysis (HPDA) [9-12] has been a long-time
NERSC workflow, in the NERSC-10 timeframe, we expect to see more HPC workflows cross the
data center boundary to external resources for new capabilities, workflow resilience, and data
access, which requires workflow orchestration and tools for profiling and debugging (Workflow
3, 4, 5, 6).
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Emerging HPC workflows will need to seamlessly couple and automate the computational tasks
and data flow between or across all three core workflow modes (simulation & modeling, AI,
experiment/data analysis) to unlock opportunities for new scientific discovery without creating
excessive burden on developers (Workflow 4).

Users across the Office of Science (SC)
are seeking greater capabilities to search,
analyze, reuse, and combine data from
different sources. Data should be leveraged
beyond a single experiment and easily
re-analyzed, shared, and archived with
simple and powerful user-driven data
lifecycle management capabilities with
Findable. Accessible. Interoperable. &
Reusable (FAIR) practices (all). [13]

The conventional approach to accessing
and interacting with HPC system resources
will need to evolve to enable seamless
integration with the larger integrated
research infrastructure [14] (Workflow 5, 6).

Integrated science workflows

NERSC is interested in technologies that can help support this vision. The needed resources
stated in these examples, based on projected science needs, are given to illustrate expected
capabilities rather than precise sizing requirements.

Enabling these complex and novel workflows requires the NERSC-10 system to provide:
● Quality of Service – computation, storage and networking designed to emphasize

response-time in addition to system throughput/utilization.
● Seamlessness – tight integration of system components to enable high performance

across the workflow steps.
● Portability – Modular workflow execution across heterogeneous HPC, edge and cloud.
● Programmability – APIs to manage data, execute distributed code, and interact with

system resources.
● Orchestration – coordinate resource management using different types of scheduling

functionality across different resource domains.
● Security, authentication and provenance – control access and generate records of

transactions.

The NERSC-10 workflow component benchmarks are designed to demonstrate the capabilities
of the platform for the most computationally intensive components of the workflows they
represent, but without the data-flow and control-flow complexities of an integrated scientific
workflow.
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An Evolving HPC Workflow Environment
The NERSC-10 system will be the cornerstone of a dynamic high performance workflow
environment at NERSC, to provide new capabilities to the DOE Office of Science community of
researchers.

NERSC-10 will have a pool of workflow environment nodes (WENs) to enable an array of
interactive user workflow capabilities, including command-line interface (CLI) through ssh and
web-based user access modes for:

● login, code compilation, application development, container builds/management, job
lifecycle management, small-scale data analysis, and data management.

● long-lived user services and frameworks (e.g., JupyterHub, databases, API services, and
message brokers), that are staff-managed or user self-supported.

The WENs will provide a robust and feature-rich environment to leverage the power within the
NERSC-10 compute and storage resources and provide flexibility to access capabilities outside
of the NERSC Data Center as workflows evolve in the NERSC-10 timeframe. WENs will support
a container orchestration platform alongside the HPC resource scheduler, Slurm, from which
users can securely and performantly launch job tasks on the compute resources or services
running on WENs. Workflows are demanding advanced scheduling capabilities, including
real-time scheduling, co-scheduling/multi-tenancy and dynamic resource allocation. The WENs
will include hardware and software to enable programmability, composability, and traceability
needed by workflows.
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Workflow Descriptions

1. High-performance simulation & modeling workflow
Science workflows, whether large-scale simulations or data-intensive simulations (see APEX
Workflows Whitepaper), are core workflows that form the foundation of more complex
workflows. The workflows can have many phases - setup, simulation, analysis, post-processing,
visualization, archival, etc. - which have different computational, storage, network and
orchestration requirements.

Workflow scenario (from the APEX Workflows Whitepaper):

Simulation and modeling workflows are increasing in complexity as methodologies are evolving
to solve higher fidelity or larger scale problems. In modern, dynamically changing scientific
simulations, each computational phase may achieve best performance or efficiency on different
combinations of processing elements. Some phases may scale up to the full machine and
require maximum throughput while some phases may be more limited in scale. Phases
themselves may include multiple types of simulations with different resource requirements and
I/O patterns. The composition of phases will also be complex as scientists incorporate
interactive methods of simulation steering or in-situ visualization to their workflows.
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2. High-performance AI workflow
Scientific machine learning (SciML) is a rapidly evolving workload, utilizing a wide variety of
models and approaches to parallelism (e.g. deep learning can employ data parallelism, tensor
parallelism, layer pipeline parallelism). Effective ML involves a complex workflow that extends
beyond simply training a model, including dataset management (storage and curation of data,
transfer of datasets, version control), experiment management (reproducibility of training runs,
hyperparameter optimization, I/O of datasets and model), and model management (deploying
and monitoring of model, scaling, model drift, triggers to restart ML workflow).

Image from Ben-Nun and Hoefler [15]

Workflow scenario:

● Training a large AI model (e.g., a deep neural network) on big scientific data
● The datasets may come from HPC simulations, experimental science facilities, or other

large scientific databases (e.g., materials databases on MongoDB)
● The deep neural network model may be trained across hundreds to thousands of

accelerators utilizing various forms of data and model parallelization, depending on the
resource requirements of the model, the data, and the optimization algorithm.

● These workloads are frequently containerized for portability and because vendors will
use containers to provide a full cutting edge software stack optimized for their hardware.

● Data will be streamed from a file system designed for fast IOPs (QSS) to provide
performance for the small random read patterns of I/O in AI model training.

● The final trained model will need to be saved to storage in off-platform storage for later
fine-tuning, or deploying on new data.

● The model may be shared with other science groups, possibly at other facilities.

Accelerating this workflow could include use of specialized AI hardware (at NERSC and/or
accessed remotely) for both training and inference.
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3. Cross-facility workflow: Rapid data analysis and real time
steering

Across the SC research enterprise, an increasing number of projects require the ability to
rapidly analyze large amounts of data and integrate data from experiments with both simulations
and AI, with the intention of providing research teams with interactive, real-time feedback to
steer experiments. Experimental facility users wish to optimize their short data collection window
(e.g. microscopy, light sources) or must respond quickly to some unexpected event (e.g.
telescopes).

Workflow scenario: An experiment external to NERSC runs and collects data during scheduled
shifts (~8 hours). In the 8 hour window, hundreds of analysis iterations occur. Each iteration
must complete in two minutes and consists of (1) GB size data transfers from the experiment to
QSS via a high-performance data transfer tool such as Globus, (2) analysis of the data, and (3)
launch simulation and modeling jobs across O(1000) GPUs, based on the results of the data
analysis. This workflow is controlled by a user-provided workflow orchestrator using APIs that
must be able to see the data arriving, update log databases, and monitor and control the status
of the workflow.

● Scientific instruments write large amounts of data to NERSC for time-sensitive analysis.
Data is transferred to QSS, with a backup copy at the experimental facility.

○ O(TB) in total transferred during the 8-hour shift.
○ QSS provides deterministic performance to the application.
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● User is running a user-defined workflow orchestrator on the WEN that uses NERSC-10
APIs and scheduling resources to track data arrival and launches and monitors the
compute jobs.

● User-requested network QOS gives a guaranteed response time between compute and
storage.

● NERSC-10 external connectivity network bandwidth provides 1 Tb/s.
● Accelerated nodes used for analysis and simulation

○ O(4000) accelerators for analysis and simulation.
○ User uses a containerized application which has been developed/optimized on

N10; the containerized application has access to interconnect/optimized
MPI/QSS/accelerator functions.

● The analysis application accesses small reference databases that sit inside and outside
of NERSC (for example, experiment configuration databases hosted at the experiment
site). The databases at NERSC sit on the WENs.

● Analysis results transferred from QSS to off-platform storage at the end of the
experiment shift. O(GB)

Resilience is a challenge for experiment sciences. A single system cannot guarantee 24/7
uptime due to planned and unplanned outages. A truly resilient workflow needs to span multiple
computing centers. A seamlessly resilient workflow should be able to query system availability
and run its containerized application on NERSC-10 or burst to external cloud resources or other
HPC facilities. This requires designing workflows to be portable, including the software
environment, orchestration across sites, transferable storage/data access, and other
technologies to enable workflows to easily switch to a new site when one is unavailable without
disrupting the integrity of experiment data. NERSC-10 will need to support commonly used
container technologies and facilitate portable workflows. Users also require resilient workflows
that are able to adapt to situations where a subset of NERSC resources are available (e.g.
WENs are available when the compute partition is down).

8



DR
AF
T

4. Hybrid HPC-HPAI-HPDA workflow
There is an ever growing demand to integrate data across HPC simulations, high-performance
AI (HPAI) and high-performance data analytics (HPDA) to create new capabilities and insight.
There is also a growing number of ways to create new hybrid workflows, for example:

Simulations generate synthetic data, coupled
with experimental data to train the AI model

The AI model is deployed to replace the
simulation to provide faster predictive
capabilities

The AI model is deployed to provide initial
conditions for future simulations

Iterations are alternating between the AI
model and simulation (coarse/fine grain)

Experiments spawn a set of simulations
across parameters. Simulation data is used to
train the AI model.

The AI model is deployed at the experimental
facility to guide experiments and inform
system controllers

Workflows must be able to seamlessly ingest data from multiple sources and couple simulation
and AI tasks with different compute, storage, and network resource requirements.

Workflow scenario: A large-scale running simulation with AI-in-the-loop automatically identifies
that an AI inference model used within the simulation needs updating. The simulation
checkpoints, and spawns a suite of AI training jobs with different parameters, informed by the
simulation, which takes roughly 5 minutes at full-system scale. The simulation then restarts,
updating the inference model with parameters from the updated AI model. After 10 hours the
workflow ends and all data is transferred to NERSC center off-platform storage for later
analysis.
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● Both simulation runs with AI-in-the-loop and AI training runs make use of accelerators
but sized for the resource needed

○ Up to full system scale for the simulation and full system scale for the AI training.
○ Require O(PB) memory to store AI model and weights

● Data used to train the AI model is transferred to QSS from off-platform storage. The AI
training data is supplemented during the workflow with data drawn from the running
simulation.

○ O(TB) starting training data
○ O(TB) supplementary simulation data written to QSS every 10 min, total of ~100

TB.
○ Filesystem suited for many random data accesses typical in AI workloads
○ Updated AI weights transferred to off-platform storage at end of workflow for

later analysis.
● Checkpoint files and simulation output written to PSS at checkpoint marks

○ O(TB) written every 10 min, total of ~750 TB.
○ Simulation output and checkpoint files transferred to off-platform storage at end

of workflow for later analysis.
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5. Scientific data lifecycle workflow: Interactive data-analytics and
visualization

Users across the Office of Science are seeking greater capabilities to search, analyze, reuse,
and combine data from different sources. NERSC users store hundreds of petabytes (PBs) of
data in NERSC’s archival storage and community file system, both data generated by NERSC
simulations and data transferred via ESnet from experimental facilities. Users will need ready
access to this data from the NERSC-10 system in order to reanalyze it, manipulate it and
conduct virtual experiments.

The access patterns for a given set of data is also changeable. Data may be temporary or may
progress through several stages in a workflow: import from an external source to be
preprocessed and then used repeatedly by user analysis, and finally archived and/or served to
the wider community via web or other interfaces. API interfaces to support the movement of
data into and between all tiers of NERSC storage are required, and support for transparent,
programmable internal data movement is desired. Science teams that move data between
multiple locations (e.g. experiment on-site computing, external data store, other HPC centers)
will also benefit from a standard interface to storage across sites.

As we deal with complex scientific problems that cross traditional discipline boundaries, it is
becoming increasingly important to organize and expand access to the wider community along
FAIR (Findable Accessible Interoperable Reusable) principles. In the NERSC-10 timeframe,
observational data of the earth, environment and climate is expected to grow dramatically. In
addition, data from experiments such as light sources, accelerators, and sequencers will
characterize the properties of atmospheric particles, geochemical processes and genomic data,
providing additional insights and data sources. The growth in the volume and complexity of data
is already challenging scientists’ ability to synthesize, model, integrate and understand the data.
NERSC needs storage systems that can support the tracking of metadata and dataset versions
and enable frequent reprocessing of the data.

Workflow scenario: The NERSC-10 system must be able to support thousands of
simultaneous users using Jupyter notebooks for web-based interactive computing, including
data integration-intensive patterns. A long-term data intensive campaign can include hundreds
of users simultaneously using Jupyter notebooks to run data analytics workflows against a
shared data set. Each user notebook analysis can scale from a fraction of a node up to 100s of
nodes, accessing PB of data, and include functions that require both CPU and accelerator
nodes. The Jupyter servers are deployed through Kubernetes, which allows users to deploy a
variety of workflow services through containers. These analytics workflows will access PB-scale
data sets stored in files on QSS, PSS, off-platform storage, or in scalable multi-PB databases
orchestrated via K8s.
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● Processors:
○ Notebooks provisioned on demand by K8s cluster running on CPU and

accelerator nodes.
○ Notebooks can share nodes and accelerators.
○ Users may interactively request 100s of nodes for running analytics jobs at scale.

● Storage:
○ Notebooks access data in files stored on PSS and QSS.
○ Multiple PB-scale datasets will be hosted on QSS, and accessed by multiple

users simultaneously via a K8s-based framework accessed via Jupyter
notebooks.

○ Data stays on PSS for reanalysis and is transferred to off platform storage for
sharing and HPSS for archiving on a regular cadence

● Network:
○ Notebooks will establish thousands of connections to persistent services and

databases across the NERSC data center.
● Workflow Environment:

○ Hundreds of users running interactively through interfaces like Jupyter or
VSCode servers.

○ Small databases hosted on WENs accessed by multiple users
○ Dynamic scaling of resources on a daily or weekly schedule: More interactive use

during working hours, more batch processing outside working hours and on
weekends.

Currently hundreds of NERSC users use Jupyter to perform interactive development and data
analysis tasks on shared nodes or up to a few dedicated compute nodes with limited data
access. The demand for more interactive access that can scale flexibly and provide simple and
powerful data management capabilities is growing to thousands of users. Co-scheduling or
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multi-tenancy on-node can maximize system utilization for less intense workflows that can share
resources, with isolation of resources at a more granular level. These interactive workflows can
also grow to include large multi-node and multi-phase steps with different resource requirements
for each phase, requiring technologies that can repartition and reprovision with agility.

6. External event-triggered and API driven workflow
Hybrid HPC and cloud execution model workflows will improve the automation and resilience of
workflows. This API driven approach provides predictable execution of scientific applications
flexibly across multiple sites to enable workflows to flexibly scale, maximize resource utilization
and provide workflow resilience.

Workflows may start and/or end outside of the NERSC Data Center and therefore require
programmatic interfaces for effective use. This extends to all features of NERSC-10 including
but not limited to scheduling, availability, data movement, service orchestration, network
connectivity. This can only be achieved with programmatic interfaces to all features of the
NERSC-10 system (e.g. via an API). A machine-to-machine interface is needed to submit work
to the NERSC-10 scheduler via an API, with no human in the loop.

Workflow scenario: An event at an external experiment triggers the need for urgent analysis at
NERSC. The number of triggers per day will vary based on the experiment needs. With each
event data must be transferred to NERSC and entered into a dynamic event processing pipeline
that involves multiple steps with different resource requirements and complex control flow
topology. An API gateway accepts the external requests and securely routes them to
pre-registered functions hosted in a Function-as-a-Service (Faas) runtime. Incoming requests
may contain small MB sized payloads and larger data transfers may be orchestrated via
handshake protocols. These functions then call further functions, make API calls, interact with
other persistent or ephemeral services such as message queues and databases, and otherwise
programmatically access other NERSC capabilities in order to process the events. For example
a function may prepare and submit a large scale simulation job to the batch queue and another
function may process the notification of the job completion and stage further processing. The
resources utilized by the workflow and the FaaS service vary dynamically in time with the
number and type of events, scaling up to potentially thousands of function invocations per
second. These workflows also need the hosting infrastructure to expose status of systems and
tasks, storage utilization and network QoS.
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● Processors:
○ Each analysis may ramp up to 100s of nodes (CPU and accelerator, may be

WEN or compute nodes)
● Storage:

○ Requests spawn queries and analysis of data coming in to the compute node
○ WEN used to host a small database that records results of data analysis.

■ O(GB) output data transferred to off-platform storage at the end of
workflow.

● Network:
○ Thousands of small to MB-size individual payloads.
○ FaaS uses a Private Overlay network between nodes and services.
○ Tunnel or other secure mechanism to reach services externally.
○ Time-sensitive analysis requires a user-requested QOS.
○ Network dynamically provisioned to scale up/down with number of transfers.
○ Possible compression and other data manipulation, duplication, etc in-network.

● Workflow Environment:
○ External requests and payload delivered to N10 FaaS runtime.
○ User is running a monitoring service that sits at the experiment site, which needs

a view into NERSC system status, job status, storage and network QoS.
○ FaaS services use API to request storage and computational resources.
○ Dynamically tears down and brings up services and network connections.
○ Databases to track progress and store results.
○ Afterwards, processed data on disk is shared publicly via a scalable data portal.
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Glossary
QSS: Quality of Service Storage System
PSS: Platform Storage System
QoS: Quality of Service
FaaS: Function as a Service
IOPS: Input/Output per second
K8s: Kubernetes
WEN: Workflow Environment Nodes
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