RHIC/LHC heavy ion program requirements

NERSC NP Requirements Workshop
Apr 29-30, 2014
High Temperature Phases of QCD
Rich program over ~14 years

Top Energy: $^{\text{AuAu}} \sqrt{s} = 200 \text{ GeV}/c^2$

Polarized: $^{\text{pp}} \sqrt{s} = 200 \& 500 \text{ GeV}/c^2$

Reference data: $^{\text{pp}}, ^{\text{dAu}}, ^{\text{CuCu}}, ^{\text{CuAu}}$

Beam Energy Scan: $^{\text{AuAu}} \sqrt{s} = 7, 11, 15, 19, 27, 39 \text{ GeV}/c^2$

Largest data set to date
$^{\text{AuAu}} \sqrt{s} = 200 \text{ GeV}/c^2$

700 million minimum bias events
500TB analysis ready data files
ALICE LHC Run 1: 2010-2013

pp @ 0.9 – 8. TeV/c²
PbPb @ 2.6 TeV/c²
pPb @ 5.02 TeV/c²

ALICE Run 1
7PB of Raw Data
16PB of derived data
Characteristics of computing in collider-based experiments

- **Event-based processing ➔ “pleasantly parallel”**
 - Each collision = independent event
 - Dataset = event collection
 - Distributed in independent files
 - Computing task
 - process an event collection
 - set of independent jobs, 1 job ➔ N files
 - Natural fit with distributed processing
 - On nodes, cluster of nodes, grids of clusters

- **Large, complicated detectors ➔ software infrastructure**
 - Requires algorithm expertise per subsystem
 - Common framework with reliance on common toolsets: ROOT, GEANT, ...
 - 10s of millions of lines of code

➢ **HPC methods are **not** typically used**
Characteristics of computing in collider-based experiments

- **HEP/NP data intensive science**
 - High precision measurements require statistically large samples
 - Experiments continuously operate over long running periods (6-10 months)
 - ALICE + STAR ~ 75% of PDSF share
 - PDSF: 2500 cores & ~4PB disk storage

- **Processing task: data reduction with pattern recognition**
 - Raw signals processed into detector ‘hits’
 - Detector hits into physics entities: particle tracks, energy deposition
 - User analysis: entities into spectra, correlations, ...

- **International collaborations: large scientific user base**
 - Operate vast, loosely-coupled resources over a sustained periods of time: ➔ High Throughput Computing (HTC)
STAR Physics Plans → 2017

• Precision measurement of heavy flavor (charm) production
• Two new major detector systems
 – Heavy Flavor Tracker (HFT)
 – Muon Telescope Detector (MTD)
• ~5x data increase
 – 2014 : 2+ billion AuAu @ 200 GeV/c²
 – 2015 : 200 million pp, 500 million pAu @ 200 GeV/c²
 – 2016 : 2+ billion AuAu @ 200 GeV/c²
 ➢ Note: data is analyzed for years
• Future program goal → high statistics Beam Energy Scan
ALICE LHC Run 2: 2015-2017

- Exploring LHC Energy Regime
 - accumulate statistics
 - pp, PbPb & pPb

- Detector upgrades
 - DCal → back-to-back calorimeter
 - Precision measurements at very large p_T
 - Jet-hadron correlations

- 2-3x data increase
 - 7 billion p+p events @ 8-14 TeV/c2
 - 0.7 billion PbPb events @ 5.5 TeV/c2
 - 0.4 billion pPb events @ ? TeV/c2
STAR Computing Model

• Non-distributed model
 – 85% of work done at RACF at BNL
 – 15% at NERSC/PDSF + KISTI

• Data management in single instance STAR File Catalog
 – two-way mirror at NERSC

• Rely on site-specific data storage, GPFS, XRootD, ...

• STAR @ NERSC
 – Software built and maintained locally
 – Users log into PDSF and submit jobs on local batch system
 – heavy use of STAR purchased PDSF file systems
 – NGF is critical for migrating to other NERSC system, primarily Carver
 – Large HPSS allocation for archival of derived data
• Distributed model organized within WLCG Collaboration

• ALICE Grid Facility
 – Tier 0 at CERN
 – Several Tier 1 sites
 • Includes archival storage
 – None in US – by choice
 – ~80 Tier 2 sites
 • CPU & stable disk storage
 • 3 active in US: NERSC, LLNL/LC, & OSC
 – ORNL to replace LLNL

• Software distributed via CVMFS

• High Throughput Computing (HTC)
 – 500 million cpu-hrs/yr
 – >10 million jobs

Average 36K jobs/day
ALICE Data model

• Data distributed at generation & registered in FileCatalog
 – 1st copy at site of processing
 – 2nd copy at nearby site
 – 3rd copy - hot data only

• Jobs go to site with data
 – Can pull from WAN on error

• Data Access patterns
 – 10/1 read/write
 – Hot data is much higher.

• Analysis “Lego” trains reduce read access
 – Many analyses connected to same input
 – More than doubled <cpu/wall>
 • 10:1 is an improvement!

69 SEs, 29PB in, 240PB out, ~10/1 read/write
Storage Technology: XRootD

- Wide use by LHC exp.
 - 3 different models
 - 4th including STAR
 - Distributed structure
 * Internal data discovery
 * Network access protocol

- Plug-in architecture
 - protocols, authN/authZ, ...
 - e.g. LSST parallel query

- Requires data management layer
 - Experiment-specific tools

Andy Hanushevsky’s NERSC talk*

Current Large Deployments

- LHC ALICE
 - Data catalog driven federation
- LHC ATLAS
 - Regional topology
- LHC CMS
 - Uniform topology with some regionalization
- LSST (Large Synoptic Sky Telescope)
 - Clusters MySQL servers for parallel queries

Each with 10s PBs distributed WW

- RHIC STAR
 - >5 PB w/ local disk on >500 of WNs
 - Local access only

\[\text{http://www.slac.stanford.edu/~abh/nersc/NERSC1311.pptx}\]
XRootD at NERSC

ALICE Grid Enabled Storage Element @ NERSC
- Part of global data storage system
 - Both WAN and local access
- 10 data servers → 0.72 PB
- ALICE supplied data management layer
 - SE Discovery @ ALICE Global FileCatalog
 - Data discovery locally with XRootD
 - Monitoring by ALICE MonaLisa module

STAR XRootD@NERSC
- Independent of system @ BNL
 - LAN access only → servers on compute nodes
 - 200+ servers → 1.0 PB
- Local data management layer
 - Scripts walk data & load local MongoDB
 - Includes XRootD, GPFS, NGF & HPSS
 - Users query for file lists, access w/ ROOT
Next Generation for ALICE: EOS

- CERN IT project built on top of XRootD
 - Dynamic life-cycle management with simple operation model
 - Significant system administration features on top of XRootD
 - Works well with cheap hardware
STAR & ALICE Baseline: → 2017

• ALICE-USA Computing Project
 – Manages disk and cpu procurements and deployment
 • Review of new 3-year proposal (FY15-FY17) this June
 – Expect modest growth at 2017:
 • 2x cpu capacity: ~10 kHEPSPEC06 → 20 kHEPSPEC06
 • 3x disk space: 0.7 PB → 2.0 PB
 – No large change in workflow
 – Little HPSS usage

• STAR Resources needs
 – Expect modest growth: cpu & disk → ~2x-3x
 – HPSS backlog due to manpower shortage ~ 1-2 PB
 – Computing Lead asked to investigate data preservation scheme with NERSC
 • 100% of STAR data moved to NERSC HPSS… several 10s PB

• Both ALICE & STAR leverage NERSC Grid enabled resources
 – Open Science Grid
Hitting HTC Limits

- HTC works best for near homogenous systems

- We do have specific tasks that fit accelerator architectures
 - But that breaks homogenous workflow structure

- Work is hitting on-board bottlenecks
 - 10GigE per worker node
 - 5GB/core memory

- Community needs to better use of whole node processing
 - HEP Colleagues @ ATLAS & CMS are further along
 - Multi-threaded GEANT and ROOT is critical
LHC High Luminosity Era: Run 4 3

Big Data Outlook

100 PB

2015-2017 2019-2021
ALICE High Luminosity Era: Run 3

- Run 3 (2019): ALICE to operate in continuous readout mode
 - Data rate off the detectors: ~TB/s → 1PB/day
 - Overwhelms predicted bandwidth and permanent storage capacities
 - Real-time online data reduction methods – Not triggered data, minimum bias!
 - Large & complex online compute facility
 - Must leverage trends in many-core
 - Offline quality event reconstruction

- Online/Offline (O^2) Project
 - Full/fast Offline processing in Online
 - Fast detector calibration, reco & QA
 - Final store ONLY reduced data
 - 100x data reduction with 100x event rate
O² Era Challenges

- **Online/Offline Reconstruction @ 50kHz Event Rate**
 - continuous data stream
 - Real-time event reconstruction
 - Data buffering
 - real-time 2nd/final pass calib
 - event reconstruction

- **Large new Monte Carlo needs**
 - Currently 60% of grid resources
 - Scales approx \sim \#-real-events
 - New strategies underway
 - event sample increase \sim 100x !!

- Move some MC production onto HPC facilities?
 - ALICE hopes to leverage US opportunity ... of proximity?
Both Titan and Stampede use accelerator technologies.
ALICE Use of HPC Resources

- **ALICE**: base code already ported to Cray
 - Geant4 version 10
 - includes support for multi-threading
 - ALICE port to Geant4 exists
 - New rewrite project: Geant V
 - Root 6.x under development

- Workflow is a challenge
 - Working with ASCR PanDA project
 - Becomes trivial with one requirement
 - Outgoing connection from compute node → NAT
Summary

• STAR & ALICE have ‘pleasantly parallel’ event-based processing
 – HTC not HPC modes
• ALICE relies heavily on distributed processing & grid-enabled resources, STAR less so
• Requirements from both groups show modest (~3x) growth
 – STAR HPSS has a backlog for HPSS
• High luminosity running for ALICE in 4 years → HPC solutions
 – ALICE O2 project is underway to prepare
 – Code base evolution, GEANT & ROOT, are also underway
 – Could leverage NERSC resources for workflow & processing model
 • scale of need is modest