Present and Future Computing Requirements for Ab Initio Calculations of Nuclear Reactions and Light Exotic Nuclei

Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017

April 29-30, 2014

Contributors:

G. Hupin (LLNL)
P. Navratil, C. Romero-Redondo (TRIUMF)
R. Roth, J. Langhammer (TU Darmstadt)

LLNL ICGC: “From Nucleons to Nuclei to Fusion Reactions”
PI: S. Quaglioni, LLNL

INCITE: “Nuclear Structure and Nuclear Reactions”
PI: J. Vary, ISU; Co-PI: P. Navratil, TRIUMF

NERSC Project “m94”
PI: J. Vary, ISU

S. Quaglioni
Our goal is to develop a fundamental theory for the description of thermonuclear reactions and exotic nuclei.

Standard solar model

- $p+p \rightarrow ^2H+e^++\nu_e$
- $^2H+p \rightarrow ^3He+\gamma$
- $^3He+^4He \rightarrow ^7Be+\gamma$
- $^7Be+e^- \rightarrow ^7Li+\nu_e$
- $^7Li+p \rightarrow ^4He+^4He$
- $^8B \rightarrow ^8Be^+e^++\nu_e$
- $^8Be^+ \rightarrow ^4He+^4He$
- $^3He+^3He \rightarrow ^4He+2p$

Fusion Energy Generation

- $d+^3H \rightarrow ^4He+n$
- $^3H+^3H \rightarrow ^4He+2n$
- $d+^3H \rightarrow ^4He+n+\gamma$

Stellar Nucleosynthesis

$^8Be^*+^4He \rightarrow ^{12}C+\gamma$

$^{12}C^*+^4He \rightarrow ^{16}O+\gamma$

Exotic Nuclei – FRIB physics

- One-Neutron Halo
- Two-Neutron Halo

What is the nature of the nuclear force?
Large-scale computations have already allowed us to describe static properties of nuclei from first principles

- *Ab initio* no-core shell model (NCSM) approach
 - Bound states
 - Two- and three-nucleon (NN+3N) forces based upon Quantum Chromodynamics

Helped to point out the fundamental importance of 3N forces in structure calculations.
We extended this approach by adding the dynamics between nuclei with the resonating-group method (RGM)

- Reconstruct the interaction potential between a projectile and a target starting from:
 - *Ab initio* NCSM wf. of the clusters
 - Nucleon-nucleon (NN) interactions

- Solve for projectile-target relative motion

- Investments from: DOE/SC/NP, SciDAC-2 (UNEDEF)

Pioneered *ab initio* calculations of light-nuclei fusion reactions starting from NN interactions
Started with nucleon-nucleus collisions & gradually built up capability to describe fusion reactions with NN force

- Evaluated $n + ^3H \rightarrow n + ^3H$ cross section for fusion diagnostics with required 5% accuracy

- Deuterium-3H & deuterium-3He fusion important for Big Bang nucleosynthesis, fusion research, atomic physics

To do: 3N force; 3-body dynamics
Now including 3N force in reactions and describing continuum of three clusters (DOE/SC/NP Early Career)

- **3N force needed for high-fidelity simulations**
 - 6×10^9 3N elements; ~15 x NN calc.

- **We want to describe systems with 3-body decay channels**
 - ~200k Core-Hrs per channel

n$^+$n$^+$He$^+$n$^+$He

- Total Cross Section [barns]
- Center-of-Mass Energy [MeV]

Energy Spectrum [MeV]

- Expt. (SPIRAL)
- NCSM/RGM
From now through 2017: deliver high-fidelity simulations complete of both 3N-force & 3-cluster dynamic effects

- **In 2017:** $^3\text{H}+^3\text{H} \rightarrow ^4\text{He}+\text{n}+\text{n}$ (fusion research) and $^3\text{He}+^3\text{He} \rightarrow ^4\text{He}+\text{p}+\text{p}$ (solar astrophysics)
 - As an intermediate step calculation with only NN interaction

- **In 2017:** Spectroscopy of Borromean exotic nucleus ^{11}Li as $^9\text{Li}+\text{n}+\text{n}$ (FRIB physics)
 - At first $^6\text{He}(=^4\text{He}+\text{n}+\text{n})$ and $^5\text{H}(=^3\text{H}+\text{n}+\text{n})$ with NN+3N force

Electron screening

\[
\sigma(E) = \frac{S(E)}{E} \exp\left(-\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2mE}}\right)
\]

- Bonetti et al.
- Junker et al.
- Kudomi et al.
- Krauss et al.

$^3\text{He}+^3\text{He} \rightarrow ^4\text{He}+2\text{p}$
Our problem, our solution

- **Problem:**
 \[\sum \int d\vec{r} \left[H_{v_v}(\vec{r}', \vec{r}) - E \ N_{v_v}(\vec{r}', \vec{r}) \right] g_v(\vec{r}) = 0 \]

 - **Hamiltonian couplings**
 - **Overlap couplings**

1) **Input:** NN, 3N interactions; projectile, target wave functions

2) **Compute:** Hamiltonian and Overlap couplings
 - Non trivial specialized algebra, depends on projectile mass
 - Sparse matrices; dim = f(# oscillator shells, # projectile nucleons)
 - Sparsity not easily predictable, depends on interaction in input

3) **Solve:** 2-, 3-body coupled-channel equations
 - At each energy step: dense linear algebra

4) **Output:** Scattering matrix, wave functions, phase shifts
Our biggest computational challenges come from couplings depending on many-body densities

- Storing in memory many-body density matrices not feasible

A. Compute and store (coupled) reduced matrix elements
 - Efficient when doable
 - Only very light systems

B. On the fly calculation of (uncoupled) density matrices
 - Well suited for parallel computing
 - Can address heavier systems

\[\sum_{\beta} \langle SD | \psi_{\alpha_i}^{(A-1)} | (a_h^+ a_i^+ a_j^+)^{K_T} a_k^T \rangle \psi_{\beta}^{(A-4)} \rangle \]

\[\times \langle SD | \psi_{\beta}^{(A-4)} | (a_m a_i)^{K_T} a_k^T \rangle \psi_{\alpha_i}^{(A-1)} \rangle \]

\[|\psi_{\alpha_i}^{(A-1)} \rangle_{SD} = \sum_i |SD \rangle_i \]

In 2017 we expect to transition more and more towards strategy B.
The primary code is NCSM_RGM, based on strategy A.

- Hybrid MPI/OpenMP
 - up to 98,304 cores on TITAN

- Algorithms include
 - Mostly specialized, in house
 - Matrix multiplications, inversions, diagonalizations

- Recent optimizations include
 - MPI I/O for large input data
 - Hybrid “all slaves” algorithms
 - MKL threaded libraries for dense algebra components

Excellent scaling should continue in larger model spaces (to study)
Current HPC Usage (2012-2013)

- LLNL Institutional Computing Grand Challenge (SIERRA)
 - 1,944 nodes, 12 cores/node
 - 261 teraflop/s, 24 GB/node

- INCITE allocation, PI: J. Vary, co-PI: P. Navratil (TITAN)
 - 10M Core-Hrs, ~70 runs/year
 - Typically 1,000 MPI tasks and 12 OpenMP threads/task for 12 Hrs
 - 23M Core-Hrs, ~50 runs/year
 - Up to 6,144 nodes for 8 Hrs: 12,288 MPI tasks, 8 OpenMP threads/task (98,304 cores)

- NERSC project “m94”, PI: J. Vary (Edison, early users)
 - 12M Core-Hrs
 - Typically 200-600 nodes, i.e. 3 to 10% of machine
 - Could use 20% now
Current HPC Usage (2012-2013)

- LLNL Institutional Computing Grand Challenge (SIERRA)
 - 1,944 nodes, 12 cores/node
 - 261 teraflop/s, 24 GB/node

- INCITE allocation, PI: J. Vary, co-PI: P. Navratil (TITAN)

- NERSC project “m94”, PI: J. Vary (Edison, early users)

- Memory Usage:
 - All memory on the node
 - Need at least 2GB/core
 - Use all global memory

- Data Usage:
 - Input < 100 GB
 - Output < 0.5 TB
 - Use mostly /scrach
HPC Requirements for 2017

- Estimate: 15 x (usage for 3-cluster simulations)
- Selected, more challenging science goals
- Concurrent storage of 3N matrix elements & 3-cluster configurations
- Approach under development
- Unprecedented large scale
- Store more scattering data for later use
- Minimum 25M Core-Hrs
- Fewer, larger runs (20-50% of Edison), same typical run time
- Will need all memory on node, i.e., # MPI tasks = # nodes
 - Use threads with OpenMP
- Expect algorithmic changes
- May need more load balancing
- Larger data requirement
Summary

- With HPC we are addressing previously unsolvable problems:
 - NNN force in light-nucleus reactions
 - Ab initio description of three clusters in the continuum

- **More memory**, larger core count, larger allocations will allow higher-fidelity simulations of complex reactions & exotic nuclei
 - Solar astrophysics, fusion research, FRIB physics

- To achieve these goals and make optimal use of new HPC architectures we will need the help of NERSC experts!
 - Not yet using GPUs (MPI/OpenMP more adapt to our problem);
 - Not porting/optimizing for MIC (Or are we?);

- Need more SciDAC type of support; dedicated positions to foster new generation of computational+nuclear scientists that can help us keep up with new technologies and reach the exascale
Accurate nuclear interactions (and currents)

- Nuclear forces are governed by quantum chromodynamics (QCD)
 - QCD non perturbative at low energies
- Chiral effective filed theory (χEFT)
 - retains all symmetries of QCD
 - explicit degrees of freedom: π, N
- Perturbative expansion in positive powers of $(Q/\Lambda_{\chi}) \ll 1$ ($\Lambda_{\chi} \sim 1$ Gev)
 - nuclear interactions
 - nuclear currents
- Chiral symmetry dictates operator structure
- Low-energy constants (LECs) absorb short-range physics
 - some day all from lattice QCD
 - now constrained by experiment

Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...
Major Publications

Ab Initio Description of the Exotic Unbound 7He Nucleus

Simone Baroni,1,2,* Petr Navrátil,2,3,† and Sofia Quaglioni3,‡

Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He

Simone Baroni,1,2,* Petr Navrátil,2,3,† and Sofia Quaglioni3,‡

Three-cluster dynamics within an ab initio framework

Sofia Quaglioni,1,* Carolina Romero-Redondo,2,† and Petr Navrátil2,†

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

Guillaume Hupin,1,* Joachim Langhammer,2,† Petr Navrátil,3,‡ Sofia Quaglioni,1,§ Angelo Calci,$^{2,‖}$ and Robert Roth2,†