

Workshop Goals & Process

Large Scale Computing and Storage Requirements for Nuclear Physics Research

NP / ASCR / NERSC Workshop

May 26-27, 2011

National Energy Research Scientific Computing Center

Logistics: Schedule

- Agenda on workshop web page
 - https://www.nersc.gov/science/requirements-workshops/nuclear-physics/ agenda
 - Need your presentation slides
- Mid-morning / afternoon break, lunch
- Self-organization for dinner

Friday Morning Schedule

- Some time available for case studies that don't finish on Thursday
- Richard & Harvey summary
- Further discussion case studies: how many (if needed); content
 - Initial table entries
- Richard & Harvey available to help
- Lunch available?

Workshop Content

- 6 "science areas," one workshop
 - Science-focused but cross-science
 discussion; Explore areas of common need
 - Low energy nuclear physics
 - Lattice QCD
 - Nuclear astrophysics
 - Heavy ion experiments
 - Nuclear data
 - Nuclear accelerators

Why is NERSC Collecting Computational Requirements?

- NERSC is science driven.
- Your input helps create the science-based justification for
 - acquiring the resources and
 - implementing the services that you need to reach your research goals
- Help NERSC make informed decisions for technology and services
 - guide procurements, staffing, and to improve the effectiveness of NERSC services.

What Input is Sought?

- Includes hardware, software, support, data, storage, analysis, work flow
 - Time frame: 2014
- Different from ERCAP:
 - Longer term focus
 - Not what you think you can get, but what you need

Logistics: Case Studies

- Narrative describing science & NERSC reqmts
- Audience is NERSC, DOE program managers
- Minimum set to capture NP mission and unique NERSC requirements
 - Initial set suggested by Ted Barnes
 - Some science areas may have more than one method in use
 - Different science areas may use the same method

Examples of Information Sought

- Type of simulation, number of, reason for #, algorithms, solver
- Parallelism: method, weak or strong scaling, implementation, concurrency, limits
- Key physical parameters and their limits:
 - spatial resolution, # of atoms/energy levels, integration range, …
- Representative code
- Key science result metrics and goals

Examples of Information Sought

- Typical science process (workflow)
- Data: amount stored / transferred for input, results, and fault mitigation
- Special needs for data intensive projects
 - Grids, gateways, workflows, provenance, `
- Special query regarding multicore/manycore
- How all of this is
 - Driven by the science
 - Likely to change and why

Final Thoughts

- Requirements characterization process is not complicated.
- Mutually beneficial.

Scaling Science

