

NERSC Role in High Energy Physics Research

Katherine Yelick NERSC Director

Requirements Workshop

NERSC is the Production Facility for DOE Office of Science

NERSC population

- About 3000 users in 400 distinct projects
- About 500 code instances

Focus on unique computing

resources for science

- -High end computing
- -High end storage
- -Network interface
- -Expert services

Science-driven

- -Machines procured competitively using application benchmarks
- -Allocations controlled by DOE based on science

2009 Allocations

2

DOE Priorities for NERSC Change Over Time

ASCR's Computing Facilities

NERSC at LBNL

- 1000+ users,100+ projects
- Allocations:
 - 80% DOE program manager control
 - 10% ASCR Leadership Computing Challenge*
 - 10% NERSC reserve
- Science includes all of DOE Office of Science
- Machines procured competitively

LCFs at ORNL and ANL

- 100+ users 10+ projects
- Allocations:
 - 80% ANL/ORNL managed INCITE process
 - 10% ACSR Leadership Computing Challenge*
 - 10% LCF reserve
- Science limited to largest scale; no limit to DOE/SC
- Machines procured through partnerships

NERSC 2009 Configuration

Large-Scale Computing System

Franklin (NERSC-5): Cray XT4

- 9,532 compute nodes; 38,128 cores
- ~25 Tflop/s on applications; 356 Tflop/s peak

Hopper (NERSC-6): Cray XT

- Phase 1: Cray XT5, 668 nodes, 5344 cores
- Phase 2: > 1 Pflop/s peak

• Upgrading to Carver (NC: c)

PDSF (HEP/NP)

• Linux cluster (~1K cores)

HPSS Archival Storage

- 59 PB capacity
- 11 Tape libraries
- 140 TB disk cache

 Upgrade planned

Demand for More Computing

- Each year DOE users requests ~2x as many hours as can be allocated
- This 2x is artificially constrained by perceived availability
- Unfulfilled allocation requests amount to hundreds of millions of compute hours in 2010

How NERSC Uses Your Requirements

2005: NERSC Five-Year Plan

- 2005 Trends:
 - Widening gap between application performance and peak
 - Emergence of multidisciplinary teams
 - Flood of scientific data
 - (Missed multicore, along with most)
- NERSC Five-Year Plan
 - Major system every 3 years
- Implementation

- NERSC-5 (Franklin) and NERSC-6 (underway) + clusters
- Question: What trends do you see for 2011-2015?
 - Algorithms / application trends and other requirements

Applications Drive NERSC Procurements

Because hardware peak performance does not necessarily reflect real application performance

CAM	GAMESS	GTC	IMPACT-T	MAESTRO	MILC	PARATEC
Climate	Quantum	Fusion	Accelerator	Astro-	Nuclear	Material
	Chemistry		Physics	physics	Physics	Science

- Benchmarks reflect diversity of science and algorithms
- SSP = average performance (Tflops/sec) across machine
- Used before selection, during and after installation
- Question: What applications best reflect your workload?

NERSC-5 "Franklin"

- Largest Cray XT4
 - 102 cabinets
 - 9,740 Quad Core nodes
 - 38,640 CPUs (cores)
 - Novel torus network for large parallel jobs
 - Direct access to parallel filesystem
- Performance:
 - 25 Tflop/s of sustained application performance
 - 352 Tflop/s of Peak

Benjamin Franklin,

One of America's First Scientists, performed ground breaking work in energy efficiency, electricity, materials, climate, ocean currents, transportation, health, medicine, acoustics and heat transfer.

NERSC-6 "Hopper"

Cray system selected competitively:

4Q09

- Application benchmarks from climate, chemistry, fusion, accelerator, astrophysics, QCD, and materials
- Best application performance per dollar and per MW
- Novel external Services for functionality and availability
- Novel interconnect network with high bandwidth and low latency

Phase 1: Cray XT5

- 668 nodes, 5,344 cores
- 2.4 GHz AMD Opteron
- 2 PB disk, 25 GB/s
- Air cooled

1Q10

Phase 2: Cray system

- > 1 Pflop/s peak
- ~ 150K cores, 12 per chip

4Q10

• 2 PB disk, 80 GB/s

3Q10

• Liquid cooled

2Q10

DOE Explores Cloud Computing

DOE's CS program focuses on HPC

No coordinated plan for clusters in SC

- DOE Magellan Cloud Testbed
 - \$16M project at NERSC from Recovery Act
- Cloud questions to explore on Magellan:
 - Can a cloud serve DOE's mid-range computing needs?
 - What features (hardware and software) are needed of a "Science Cloud"? Commodity hardware?
 - What requirements do the jobs have (~100 cores, I/O,...)
 - How does this differ, if at all, from commercial clouds which serve primarily independent serial jobs
- Magellan not a NERSC Program machine
 - Not allocated in ERCAP; testbed, not production

NATIONAL ENERGY RESEARCH

Cluster architecture

Reservations at NERSC

- Reservation service being tested:
 - Reserve a certain date, time and duration
 - Debugging at scale
 - Real-time constraints in which need to analyze data before next run, e.g., daily target selection telescopes or genome sequencing pipelin
 - At least 24 hours advanced notice
 - <u>https://www.nersc.gov/nusers/services/</u> reservation.php
 - Successfully used for IMG run, Madcap, IO benchmarking, etc.

Science Gateways at NERSC

- Create scientific communities around data sets
 - Models for sharing vs. privacy differ across communities
 - Accessible by broad community for exploration, scientific discovery, and validation of results
 - Value of data also varies: observations may be irreplaceable
- A science gateway is a set of hardware and software that provides data/services remotely
 - Deep Sky "Google-Maps" of astronomical image data
 - Discovered 140 supernovae in 60 nights (July-August 2009)
 - 1 of 15 international collaborators were accessing NGF data through the SG nodes 24/7 using both the web interface and the database.
 - Gauge Connection Access QCD Lattice data sets
 - Planck Portal Access to Planck Data
- Building blocks for science on the web
 - Remote data analysis, databases, job submission

DEEP SH

Visualization Support

Petascale visualization: Demonstrate visualization scaling to unprecedented concurrency levels by ingesting and processing unprecedentedly large datasets.

Implications: Visualization and analysis of Petascale datasets requires the I/O, memory, compute, and interconnect speeds of Petascale systems.

Accomplishments: Ran Vislt SW on 16K and 32K cores of Franklin.

• First-ever visualization of two *trillion* zone problem (TBs per scalar); data loaded in parallel.

Petascale visualization

Plots show 'inverse flux factor,' the ratio of neutrino intensity to neutrino flux, from an ORNL 3D supernova simulation using CHIMERA. b

Isocontours (a) and volume rendering (b) of two trillion zones on 32K cores of Franklin.

а

U.S. DEPARTMENT OF

Requirements Drive NERSC's Long-Term Vision

NERSC System Roadmap

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

- Goal is two systems on the floor at all times
- Systems procured by sustained performance

ENERGY Office of Science

S. DEPARTMENT OF

JERG

Data Driven Science

- Scientific data sets are growing exponentially
 - Ability to generate data is exceeding our ability to store and analyze
 - Simulation systems and some observational devices grow in capability with Moore's Law
- Petabyte (PB) data sets will soon be common:
 - Climate modeling: estimates of the next IPCC data is in 10s of petabytes
 - Genome: JGI alone will have .5 petabyte of data this year and double each year
 - *Particle physics*: LHC is projected to produce
 16 petabytes of data per year
 - Astrophysics: LSST and others will produce 5 petabytes/year
- Create scientific communities with "Science Gateways" to data

Office of

Science

Tape Archives: Green Storage

- Tape archives are important to efficient science
 - 2-3 orders of magnitude less power than disk
 - Requires specialized staff and major capital investment
 - NERSC participates in development (HPSS consortium)
- Questions: What are your data sets sizes and growth rates?

- NERSC has a modest number of "commodity systems"
- Mostly specialized science systems for compute, disk storage (parallel filesystems), and tape archives

Energy Efficiency is Necessary for Computing

- Systems have gotten about 1000x faster over each 10 year period
- 1 petaflop (10¹⁵ ops) in 2010 will require 3MW
 - \rightarrow 3 GW for 1 Exaflop (10¹⁸ ops/sec)
- DARPA committee suggested 200 MW with "usual" scaling
- Target for DOE is 20 MW in 2018

Moore's Law is Alive and Well

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

Office of Smith, Chris Batten, and Krste Asanoviç

But Clock Frequency Scaling Has Been MERCE PRESERVE Replaced by Scaling Cores / Chip

Slide Source: Kathy Yelick. Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

24

Performance Has Also Slowed, Along

Slide Source: Kathy Yelick. Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

NERSC Goal Usable Exascale in 2020

- Computational scaling changed in 2004
- Problems also for laptops, handhelds, data centers
- Parallelism on-chip brings algorithms, programming into question
- NERSC: Programmable, usable systems for science
- 1) Energy efficient designs
- 2) Facilities to support scale for both high and mid scale

Parallelism is "Green"

- Concurrent systems are₃ more power efficient Density (W/cr
 - Dynamic power is proportional to V²fC
 - Power | Increasing frequency (f) also increases supply voltage (V) \rightarrow cubic effect
 - Increasing cores increases capacitance (C) but only linearly

- High performance serial processors waste power
 - Speculation, dynamic dependence checking, etc. burn power
 - Implicit parallelism discovery
- Question: Can you double the concurrency in your algorithms and software every 2 years?

Technology Challenge

Technology trends against a constant or increasing memory per core

- Memory density is doubling every three years; processor logic is every two
- Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Question: Can you double concurrency without doubling memory?

Hardware and Software Trends

- Hardware Trends
 - Exponential growth in explicit on-chip parallelism
 - Reduced memory per core
 - Heterogeneous computing platforms (e.g., GPUs)
 - As always, this is largely driven by non HPC markets
- Software Response
 - Need to express more explicit parallelism
 - New programming models on chip: MPI + X
 - Increased emphasis on strong scaling
 - No more serial code scaling from hardware
- What we want
 - Understand your requirements and help craft a strategy for transitioning to a hardware and programming environment solution

High Energy Physics Science at NERSC

Supernova Core-Collapse

Objective: First principles understanding of supernovae of all types, including radiation transport, spectrum formation, and nucleosynthesis.

Implications: Will help confront one of the greatest mysteries in high-energy physics and astronomy -- the nature of dark energy.

Accomplishments: NERSC runs of VULCAN core collapse explain magnetically-driven explosions in rapidly-rotating cores.

- First 2.5-D, detailed-microphysics radiationmagnetohydrodynamic calculations; first time-dependent 2D rad-hydro supernova simulations with multi-group <u>and</u> multi-angle transport.
- CASTRO, new multi-dimensional, Eulerian AMR hydrodynamics code that includes stellar EOS, nuclear reaction networks, and self-gravity.

NERSC: 2M hours alloc in 2009; Vis supportImage: Structure of ScienceImage: Structure of Science

PIs: S. Woosley (UCSB), A. Burrows (Princeton)

The exploding core of a massive star. a), b), and c) show morphology of selected isoentropy, isodensity contours during the blast; (d) AMR grid structure at coarser resolution levels."

BERKELEY LABI

Cosmic Microwave Background

Objective: Analyze data from the Planck satellite -- definitive Cosmic Microwave Background (CMB) data set.

Implications: CMB: image of the universe at 400k years, relic radiation from Big Bang

- Accomplishments: NERSC provides the components of the data pipeline for noise reduction, map-making, power spectrum analysis, and parameter estimation
- 2006 Nobel Prize in Physics

NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING CENTER

- 32 TB final data set size, ~400 users
- data sets analyzed as a whole because complex data correlations; no "divide and conquer"
- Launched May09, first "light" Sept09
- Also ~10k-core XT4 MonteCarlo calibration runs, produce ~10X data
- Anticipate Moore's law growth in data set size for 15 years

PI: J. Borrill (LBNL)

HEP: Accelerator Modeling

Objective: Help design and optimize the electron beam for LBNL next-generation Free Flectron Laser

Implications: Numerically optimizing the beam lowers cost of design / operation and improves X-ray output, helping scientific discovery in physics, material science, chemistry and bioscience.

Accomplishments: Code includes selfconsistent 3D space-charge effects, shortrange geometry & longitudinal synchrotron radiation wakefields, and detailed RF acceleration / focusing.

Billion-particle simulation required

NERSC:

- Allocated 800K hours in 2009
- IMPACT code, part of NERSC6 test suite
- NERSC provided visualization support

Office of Science

PI: J. Qiang (LBNL)

Visualization of an electron beam bending and changing orientation as it passes through a magnetic bunch compressor.

Proc. Linac08 Conference

Lattice QCD

Objective: Understand strong interactions that bind quarks and gluons together.

Implications: Explain new phases of matter that might form in heavy-ion collisions (in LHC, for example).

- Accomplishments: Cited by DOE in 2010 Congressional Budget Request as one of 3 major accomplishments in Theoretical Nuclear Physics in 2008/9.
- First ever QCD calculations of:
 - Three-body force between hadrons.
 - Screening of color forces between quarks by a background of hadrons.
 - a three-baryon system.

NERSC:

- QDP++/Chroma on Franklin; 10M+ hours
- Mostly 4k cores per job

Pls: M. Savage (U. Wash.), W. Detmold (JLab, College of W&M)

Color Screening by Pions 12 10 δF(R,n) [MeV fm⁻¹] $\mathbf{P} N_{\mathbf{HYP}}=0$ $\mathbf{H} N_{\mathbf{HYP}} = 2$ H N_{HYP}=4 $N_{HYP}=1$ 0.0 0.10.2 0.3 0.4 0.50.6 0.7

R [fm] Contribution to the radial quark-antiquark force at two pion densities. The attractive force is found to be reduced by the pion screening. This is a first step toward a more systematic exploration of hadronic effects with lattice QCD.

Phys Rev Lett, (2009)

Laser Wakefield Acceleration

Objective: Use multi-scale simulation to understand & design laser driven plasma wakefield accelerators, supporting LOASIS experiments.

Implications: Offers promise of accelerators orders of magnitude smaller, less costly than current machines.

Accomplishments: 2- & 3D PIC simulations (b) (VORPAL) reproduce electron beam charge & energy, show physical mechanisms of acceleration.

- Used to develop new injector technologies to improve beam quality
- Designing a proposed 10GeV LWFA
- Solutions to PIC code limitations.
- LOASIS and SciDAC: VACET and SDM

NERSC:

 2.2M hours on Franklin; significant viz /analytics support; typical runs use ~10k cores

Science

PI: C. Geddes, LBNL

Plasma density gradient controlled injector in 2D

Particle trace of particles according to user specified criteria (momentum here; red=high)

Simulation showing 3D contours and projections of the wake (blue), laser (red), and particle bunch (yellow) in a 100 MeV LWFA

SciDAC Review Cover Story (2009)

High Energy Physics: Palomar Transient Factory

Objective: Process, analyze & make available data from Palomar Transient Sky survey (~300 GB / night) to expose rare and fleeting cosmic events.

Implications: First survey dedicated solely to finding transient events.

Accomplishments: Automated software for astrometric & photometric analysis and *real-time* classification of transients.

- Analysis at NERSC is fast enough to reveal transients *as data are collected.*
- Has *already uncovered* more than 40 supernovae explosions since Dec., 2008.
- Uncovering a new event about every 12 *minutes.*

NERSC:

• 40k MPP allocation + 1M HPSS in 2009; Use of NERSC NGF + gateway (next slide)

PI: P. Nugent (LBNL)

PTF project data flow

Two manuscripts submitted to Publications of the Astronomical Society of the Pacific

Deep Sky Science Gateway

Objective: Create a richer set of computeand data-resource interfaces for nextgeneration astrophysics image data, making it easier for scientists to use NERSC and creating world-wide collaborative opportunities.

Implications: Efficient, streamlined access to massive amounts of data for broad user communities.

Accomplishments: Open-source software customized to create Deep Sky database system and interface: www.deepskyproject.org

- ~ 11M 6-Mb images stored in HPSS/NGF
- DeepSky is like "Google Earth" for astronomers.

• Other NERSC gateways: GCRM (climate), Planck (Astro), Gauge Connection (QCD), VASP (chemistry/materials science).

NERSC Project

Map of the sky as viewed from Palomar Observatory; color shows the number of times an area was observed

http://www.nersc.gov/nusers/services/Grid/SG/

ENERGY Science

ATLAS, CDF, and DayaBay

- ATLAS is simulating the ATLAS detector at the LHC and will be doing data analysis when the LHC is online
- CDF does data analysis and simulation of the CDF detector at the Tevatron.
- DayaBay does simulation and analysis tools for the DayaBay Neutrino Mixing experiment

• NERSC

- All three do analysis and simulation on PDSF and store data in the NGF filesystem and HPSS.
- Requirements:
 - Need high job throughput and available bandwidth
 - ATLAS uses grid services, and thus the OSG stack support
 - DayaBay will transfer ~10MB/sec from the experiment in China for a total of ~150TB/year in 2010.

Conclusions

NERSC requirements

- Qualitative requirements shape NERSC functionality
- Quantitative requirements set the performance

"What gets measure gets improved"

- Goals:
 - Your goal is to make scientific discoveries
 - Articulate specific scientific goals and implications for broader community
 - Our goal is to enable you to do science
 - Specify resources (services, computers, storage, ...) that NERSC could provide with quantities and dates

Cover Stories from NERSC Research

NERSC is enabling new science in all disciplines, with about 1,500 refereed publications per year

