

HEP HPC Requirements Workshop: Cosmic Microwave Background Data Simulation & Analysis

Julian Borrill Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley

Overview

- 3 NERSC repositories
 - mp107: O(10) NSF/NASA/DOE/international suborbital experiments
 - planck: current ESA/NASA satellite mission (with DOE IAA)
 - cmbpol: proposed NASA satellite mission
- O(100) users, 4 projects (Planck, EBEX, PolarBear, QUIET), 2 modules (cmb, planck)
- LBNL/UC Berkeley, JPL/Caltech, U Chicago, U Minnesota, etc
- Paris, Rome, Trieste, Helsinki, London, Cambridge, Cardiff, Munich, etc
- Simulation & analysis of CMB data
 - Algorithm validation & verification
 - Implementation efficiency & scaling
 - Mission design & science exploitation
 - Snapshot of the Universe 380,000 years after Big Bang
 - Fundamental parameters of cosmology
 - e.g. Planck results assumed by all Dark Energy missions
 - Highest energy physics
 - Big Bang as ultimate particle accelerator

CMB Data

CMB Data Analysis

- In principle very simple
 - Assume Gaussianity and maximize the likelihood
 - of maps given the data and its noise statistics (analytic).
 - of power spectra given the maps and their noise statistics (iterative).
- In practice very complex
 - Foregrounds, asymmetric beams, non-Gaussian noise, etc.
 - Algorithmic scaling with data volume.
 - Correlated data precludes divide-and-conquer.
 - Data simulation scales as *at least* $O(N_t)$, usually significantly more.
 - Maximum likelihood map-making scales as $O(N_i N_t \log N_t)$.
 - Maximum likelihood power spectrum estimation scales as O(N_i N_I N_p³).
 - Monte Carlo power spectrum estimation scales as O(simulation) + O(map-making) per realization
 - Approximations => systematic effects from analysis itself.

CMB Data Sets

Date	Experiment	Description	Time Samples	Sky Pixels
1990-93	COBE	All-sky, low-res, T	8x10 ⁸	3x10 ³
1998	BOOMERaNG	Cut-sky, mid-res, T	9x10 ⁸	3x10⁵
2001-10	WMAP	All-sky, mid-res, TE	2x10 ¹¹	6x10 ⁶
2009-11	Planck	All-sky, high-res, TE	3x10 ¹¹	1x10 ⁸
2010	EBEX	Cut-sky, high-res, TEB	3x10 ¹¹	6x10⁵
2010-12	PolarBeaR	Cut-sky, high-res, TEB	3x10 ¹³	1x10 ⁷
2011-14	QUIET-II	Cut-sky, high-res, TEB	1x10 ¹⁴	7x10⁵
~2020	CMBpol	All-sky, high-res, TEB	1x10 ¹⁵	9x10 ⁸

Increased resolution & sensitivity needed for evolving science goals requires ever larger data sets to achieve necessary S/N.

 $\ensuremath{\mathsf{N}}_t$ increases as Moore's Law.

Scaling To Date

2000: BOOMERanG-98 temperature map (10⁸ samples, 10⁵ pixels) calculated on 128 Cray T3E processors;

2005: A single-frequency Planck temperature map (10¹⁰ samples, 10⁸ pixels) calculated on 6000 IBM SP3 processors;

2008: EBEX temperature and polarization maps (10¹¹ samples, 10⁶ pixels) calculated on 15360 Cray XT4 cores.

Planck First Light Survey

Code Profile - I

- Calculations dominated by simulation & mapping of time-ordered data:
 - Iterative analysis cycle: $O(10^2) + 1$ analyses
 - Monte Carlo error analysis: O(10²) + O(10⁴) realizations
 - PCG solver: O(10¹⁻²) iterations
 - » FFT/SHT: O(10^{12 15}) operations
 - Overall O(10¹⁷⁻²¹) flops (plus prefactor & efficiency).
- Memory dominated by maps:
 - TOD distribution over cores implies pixel distribution
 - Only hold local sub-map on each core
 - Ancillary data growing fast
- Communication dominated by map-reductions:
 - Replace MPI_Allreduce() with TBD (UPC, FastBit, other)

Code Profile - II

- IO dominated by reading TOD (including pointing) & writing maps:
 - M3 data abstraction layer
 - Replace full with compressed pointing, reconstructed on the fly
 - Replace simulate/write => read/map cycle with on-the-fly sim/map
- Storage dominated by TOD:
 - MC map sets significant now but essentially constant
 - Full TOD needs to be spinning/accessible simultaneously
 - CMB rule-of-thumb, need to store 100x TOD & 10000x maps

Current HPC Requirements

- E.g. SimMap 100 realizations of 1-year Planck mission in <1 day wall-clock.
- Franklin & NGF
 - Use destriping map-maker to reduce FLOPs & communication
 - 10,000 cores x 3 hours (noise) + ? (signal)
 - 500-800MB/core
 - Asymmetric beam simulations require 5-10GB/core!
 - Minimal read, 1TB write
 - NGF too slow => use scratch & transfer data post hoc.
- Known bottlenecks:
 - 1. Flops
 - 2. Memory
 - 3. Communication & IO bandwidth
 - 4. Disk space
- (Partial) software solutions trade memory/bandwidth/disk for flops.

- Time-ordered data volume increases by at least an order of magnitude:
 - 10x calculations, 10x concurrency
 - Constant memory/core
 - Constant communication volume
 - 10x I volume, ~constant O volume
 - 10x storage
- Planck is special
 - Baseline for sub-orbital experiments ~0.1x
- Anticipated problems at scale
 - Communication & IO don't scale with calculations
 - Delivering data fast enough to exploit capability
 - GPUs, etc
 - Heterogeneous heterogeneity
 - System stability

The Next 3-5 Years - Preparation

- NSF PetaApps project to address scaling
 - Modularize code by HPC component
 - Implement a range of trade-offs between components
 - System-specific (one-time) tuning
 - Analysis-specific (run-time) tuning
- GPU exploration for flops
 - Test-bed systems useful, but where do they lead?
 - Pooling resources, libraries?

Summary

- Recommend:
 - maintaining balance in NERSC systems
 - data delivery is (almost) everything
 - NGF still needs work; what is NERSC committed to?
 - investment in human resources for scaling challenges
 - longer-term allocation commitments to projects
- With 50x resources I could:
 - stop pretending that the resources needed to analyse next-generation suborbital experiments with 10x data will only be 10x Planck
 - start performing simulations for CMBpol to inform its concept/design
- The expanded HPC resources I want:
 - more of everything!
- Additional NERSC services:
 - Enhanced project support; data & job management tools