

Workshop Goals & Process

Large Scale Computing and Storage Requirements for Fusion Energy Sciences

Joint FES / ASCR / NERSC Workshop

August 3-4, 2010

Logistics: Schedule

- Agenda on workshop web page
 - http://www.nersc.gov/projects/science_requirements/FES/agenda.php
- Mid-morning / afternoon break, lunch
- Self-organization for dinner
- 9 "science areas," one workshop
 - Science-focused but cross-science discussion
 - Explore areas of common need (within FES)
- Breakout sessions Weds AM

Why is NERSC Collecting Computational Requirements?

- Help ASCR and NERSC make informed decisions for technology and services.
- Input is used to guide procurements, staffing, and to improve the effectiveness of NERSC services.
 - Includes hardware, software, support, data, storage, analysis, work flow
 - Time frame: 2014
- Result: NERSC can better provide what you need for your work.

Logistics: Case Studies

- One co-lead (for each science area)
 - help roll up discussions into major case studies
- Case Studies:
 - Narrative describing science & NERSC reqmts
 - Audience is NERSC, DOE program managers
 - Initial set suggested by John Mandrekas
 - Minimum set to capture FES mission and unique NERSC requirements
 - Encourage participation by all; roundtable

Logistics: Worksheets

- Web Worksheets: "Reference Material"
 - Based on NERSC info
 - Summary of projects as we know them
 - Good point of departure
 - A framework for discussion
 - But not necessarily the entire story

Logistics: Final Report Content

- Format similar to ESnet
 - But NERSC requirement space much broader than Esnet
 - See "Reference Material" on web site
 - Contents
 - Executive summary,
 - ~2-page case study reports,
 - NERSC synthesis of all results

Logistics: Final Report Schedule

- Case studies due to NERSC Aug 27
- NERSC draft report Oct 1
- Participants review period Oct 22
- NERSC Near final Nov 5
- BES AD approval
- NERSC Revisions
- Final Report posted on Workshop Webpage

Examples of Information Sought

- Type of simulation, #, reason for #, algorithms, solver
- Parallelism: method, weak or strong scaling, implementation, concurrency, limits
- Key physical parameters and their limits:
 - spatial resolution, # of atoms/energy levels, integration range, …
- Representative code
- Key science result metrics and goals

Examples of Information Sought

- Typical science process (workflow)
- Data: amount stored / transferred for input, results, and fault mitigation
- Special needs for data intensive projects
 - Grids, gateways, workflows, provenance, `
- Special query regarding multicore/manycore
- How all of this is
 - Driven by the science
 - Likely to change and why

Final Thoughts

- Requirements characterization process is not complicated.
- Mutually beneficial.

Scaling Science

