Particle simulation of laser wakefield particle acceleration – M558 C.G.R. Geddes (M558 lead)

LOASIS program, LBNL, <u>http://loasis.lbl.gov</u> W.P. Leemans, Program head; E. Esarey deputy & theory head C. Benedetti, M. Chen, E. Cormier-Michel, E. Esarey, C.B. Schroeder

Tech-X, http://www.txcorp.com D.L. Bruhwiler, J.R. Cary, B.M. Cowan, C. Nieter, K. Paul, V. Ranjabar

W. Andreas, S. Bajlekov, N. Bourgeois, T. Ibbotson, S.M. Hooker

ERSC

Oxford

- BELLA project + collaborators: High gradient laser – plasma accelerators
- Quantitative modeling of self-trapped low
 ΔE experiments¹ using new numerics²
- Physics of controlled trapping for low momentum spread bunches: downramp experiments³ & colliding pulse injection
- Design of efficient 10 GeV stages for BELLA and laser plasma collider concept & emittance control⁴
- GeV stages Thomson gamma sources for SNM detection1⁵

Compute requirements & outlook

¹ Geddes et al., SciDAC Review 2009 & Nature 2004; ² Cormier-Michel et al., PRE 2008; ³ Geddes et al., PRL 2008; ⁴ Cormier-Michel et al., ICAP 2009; ⁵ Geddes et al., CAARI 2008

ly tools that can be used to reconcil

LOASIS team – development of laser plasma accelerators

Staff

- E. Esarey (T) C. Geddes (S+E) A. Gonsalves (E) W.Leemans(E) N. Matlis (E) C. Schroeder (T) C. Toth (E)
- J. Van Tilborg (E)

Eng/Techs

D. Syversrud N. Ybarraza K. Sihler

Admin

O. Wong M. Condon (0.5) G. Rogers (0.1)

Postdocs

Students

B. Kessler

C. Lin (PhD)

G. Plateau (PhD)

S. Shiraishi (PhD)

T. Le Corre (M)

H. Vincente

D. Kim

M. Bakemen (PhD)

- E. Cormier-Michel (S)
- J. Osterhoff (E)

Collaborators include:

LBNL : K. Barat, M. Battaglia, W. Byrne, J. Byrd, R. Duarte, W. Fawley. K. Robinson, D. Rodgers, R. Donahue et al. Tech-X: J. Cary, D. Bruhwiler, et al. SciDAC team

Oxford: S. Hooker et al. MPQ: F. Krausz, F. Gruener et al. LOA: O. Albert, L. Canova GSI: T. Stoehlker, D. Thorn

BERKELEY LAB	Simulation Collaborators	TECH VORPAL
LOASIS:	COMPASS SCIDAC2 VS. DEPARTMENT OF Science C.G.R. Geddes, C. Benedetti, M. Chen, E. Cormier-Michel E. Esarey, C.B. Schroeder, W.P. Leemans	BERKELEY LAB VORPAL
Tech-X: Tech - X & U. Colora Oxford NERSC, visualization	 D. Bruhwiler, B. Cowan, P. Messmer, P. Mullowney, K.Paul J. Cary W. Andreas, S. Bajlekov, N. Bourgeois, T. Ibbotson, S.M. Hooker N. Bethel, J. Jacobsen, Prabhat, O. Rubel, D. Ushizima, G. Weber M. Howison 	
DOE Scientific Dis LBNL AMAC, CBP: UCLA:	scovery through Advanced Computing: R. Ryne, J.L. Vay, W. Fawley W.B. Mori, F.S. Tsung, C. Huang, M. Tzoufras, M. Zhou, W. Lu, S. Martins, M. Tzoufras, V. Dycek + collaborators at IST	
USC/Duke: Other collaboratio LWFA – Gas targets -	T. Katsouleas, X. Wang ns include: Nebraska, B.A. Shadwick et al.; STI Optronics, W. Kimura <i>et al</i> ; LBNL APDEC, P. Collela <i>et al</i> Alameda Applied Sciences – M. Krishnan <i>et al</i>	USC STHOPTRONICS

Simulation + theory required to model self consistent laser, wake, and bunch

Radiation pressure of intense laser excites space charge plasma wave which accelerates particles with high gradient

Tajima & Dawson PRL 1979; Esarey et al. TPS 1996; Leemans et al., IEEE Trans. Plasma Science (1996); Phys. Plasmas (1998)

- Explicit particle in cell simulates required physics resolves laser period
 - Mhours CPU for cm-scale GeV (VORPAL*)
 - Domain decomposition parallelization
 - present runs ~ 50cells^3/ processor
- Meter scale of 10 GeV stages O[Ghours] explicit → scaling + new models

Energy gain Length Gradient	$n \sim n^{-1}$ ~ $n^{-3/2}$ ~ $n^{1/2}$	(10 GeV at 10 ¹⁷ /cc) (1m at 10 ¹⁷ /cc) (10 GV/m at 10 ¹⁷ /cc)
Laser w _o &L	$\sim \lambda_p$	(100fs at 10 ¹⁷ /cc)
Depletion	~ Depha	asing for $a_0 > 1$

Require improved accuracy &resolution (compute time) to model collider emittances

Self trapped experiments: percent energy spread, physics, scaling

sim@25p0 experime

「GeV

•Laser channeling: first low $\Delta E/E$ beams •10 TW laser, 2mm plasma @ 2x10¹⁹/cc Accurately model bunch 500 electrons 2 Experimental beam ١Ŋ 0 250 Gas jet nozzle '04 density Momentum (MeV/c) /4 of 3 178 (mm) 154 Data **VORPAL** Simulation Vislt vis by O. Rübel Å 0.9 1.3 X(mm) 0.03 0.15 0.175 0.3 0.4 1.0/GeVI 1.4 06 0.8 3 mrad divergence, Δ E/E 4%, E_{peak}~170MeV Geddes et al., Nature 2004* I GeV beams, stable beams at 0.5 GeV Leemans et al., Nature Phys 2006

 Capillary channels+low n_e=GeV in 3 cm •40 TW laser, 3cm plasma@4-5x10¹⁸/cc

- Simulations show physics of self trapping production of narrow ΔE :
- Accurate modeling of phase space with interpolation & smoothing developed**

100 MeV 3D production runs at 11kprocessor/36 hr, 2D 256 processor/1 hr
 3-5 year outlook: routine 3D modeling at GeV & beyond; parameter scans & auto-analysis

VORPAL : Nieter et al., JCP 2004

*Also: Faure et al.; Mangles et al. Nature 2004; Tsung et al. PRL 2004, Pukhov APB 2002 **E. Cormier-Michel et al., PRE 2008, Geddes et al. AAC 2008 & SciDAC Rev. 2009

Developing low emittance injectors: plasma downramp & colliding pulse

Theory: Esarey PRL 97; Experiments: Faure et al Nature 06, Toth Proc PAC 2007, Kotaki PRL 2009

3-5 year outlook: extend resolution and use many runs to design low emittance injector

Develop efficient 10 GeV 40 J, colliderrelevant BELLA Stages

3-5 year outlook: fast codes + new comp. capacity to accurately model collider stages for e-/e+ including very low emittance, radiation, scattering contributions, and staging

Compact plasma accelerators – BELLA PW laser and towards conceptual future LPLC & sources

- Architectures : Cray XT
- Compute/memory load
 - 3.5 Mhours in 2009
 - production simulations up to 11k-processors typical 4k (scheduling convenience)
 - 24hours/run
 - Memory 100GB (<1GB/core)
 - processors communicate edge cells each time step to neighbors order 30k-cells
 - Run startup often requires python scripts for set up
 - Analysis most efficient on fewer nodes with large memory 4GB
- Data read/written
 - 2TB written per run sets disk requirements
 - 50 Gb/checkpoint (approx every 30 minutes)
 - restart involves read of one checkpoint
 - 5 TB/year moved out of NERSC
 - Off line storage 20 TB

Current HPC Requirements

- Codes: VORPAL (WARP, other finite difference time domain)
 - Fields and fluids are represented on a structured Cartesian mes
 - Plasma usually represented by particlesby using 2nd-order leap-frog algorithm via PIC (particle-in- cell), or fluid
 - Laser and EM fields:

BERKELEY LAB

- Explicit FDTD advance in lab or boosted frame OR
- Envelope representation of laser field with Trilinos library suite (Aztec)
- WARP and VORPAL also used for RF accelerators relevant to staging
- Necessary software, services or infrastructure
 - HDF5 and assistance in tuning and working with it for large jobs
 - Tuning assistance particularly file system
 - Vislt, IDL, perl, python
 - Visualization work and assistance in visualizing and analyzing large datasets, and in extracting physics data from them.
- Known limitations/obstacles/bottlenecks
 - Operators are all local, which enables local communication via MPI
 - Production simulations up to 11k-processors limited by capacity/allocation
 - Scaling of parallel I/O (e.g. H5) needed especially for non-constant domain sizes.
 - For production parameter exploration, tools for batch executing, checking and relaunching, and automated analysis

HPC Usage and Methods Next 3-5 Years

- Upcoming changes to codes/methods/approaches
 - Computational approach anticipated to scale to >100k-core
 - Radiation and scattering models will become increasingly important
 - GPU development in progress VORPAL, OSIRIS, others
 - PIC codes (e.g. VPIC) also perform well on cell
- Changes to Compute/memory load
 - 50x scaling in resources anticipated to accurately design collider scale stages
 - New models in conjunction with new computers: laser envelope, Lorentz
 - This will be used to:
 - Simulate 10 GeV stages at high resolution to model collider/light source emittances
 - Simulate staging of mulitple modules for high energies
 - Run multiple 3D simulatios to explore parameter space to improve beam quality
 - important to allow simulations to predictively explore parameter space to guide experiments
 - Simulate particle injector at high resolution to determine combination of techniques to produce the required beam quality
 - 150Mhours/year
 - 500kcores @ 12-24hours for large runs + many at 5-50kcores
 - 100 TB memory (< 1 Gb/core)

- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 - Parallel file I/O such as H5 must be scaled to 10's 100's of thousands of processors, and must be made robust to varying mesh sizes on different processors.
 - Communication of the edge information from each processor to processors handling neighboring domains is required each step- may need to be multi-layered on many-core or GPU systems
- Strategy for dealing with multi-core/many-core architectures
 - Algorithm scales to 100's of k-cores at this time
 - Different communication can be used between cores and nodes

- Changes to Data read/written
 - 50+ TB for large runs determines on line storage
 - 1 TB/dump (assumes some data subsetting developed else ~ 50TB)
 - Off line storage 200TB
- Changes to necessary software, services or infrastructure
 - Parallel file I/O such as H5 must be scaled to 10's 100's of thousands of processors, and be made robust to varying mesh sizes on different processors.
 - Data subsetting must be developed in line to reduce dump file size
 - Error checking and job-relaunch services that detect if a job has terminated partway through and automatically restart
 - Scans of parameter space are needed requiring automation to generate and run sequentially large numbers of jobs, and to extract the data from them.
 - Parallel visualization and analytics tools must be further developed, to provide similar functionality to well-known serial tools

- NERSC architecture, configuration and service requirements :
 - Parallel I/O scalability + access to data for analytics
 - Failure detection and ability to restart jobs
- With access to ~50X NERSC resources:
 - Design of collider relevant laser plasma accelerator stages & emittance
 - Many 3D simulations allowing exploration of parameter space to predictively design experiments
 - Simulate controlled injection and beam conditioning with high fidelity
- "Expanded HPC resources" important for project:
 - availability of 500+ kcores for large runs
 - batch execution of many runs at the 5-50kcore level
 - job error detection and restart services
- Any other special needs or NERSC wish lists?
 - Parallel analytics tools matching functionality of serial solutions
 - Development of H5 and other parallel file architectures & flexible domains

end

Simulation challenges

- Accurate kinetics and bunch emittance
 - Improve accuracy in momentum advance
 - EM dispersion (cerenkov and particle noise)
 - Mesh refinement at particle bunch
 - Noise control fluids
 - Incorporate radiation & scattering

- Meter scale structures
 - Accurate reduced models
 - EM dispersion (laser propagation)
 - Error accumulation
 - Scaling

Others:

Automation & data mining

Detailed validation

Developed visualization and analysis Two student projects + VACET /

<figure>

Interactive exploration of TB datasets

Visit 3D visualization

ERSC

*O. Rubel et al., .accepted SC08 ** D. Ushizima et al., sub ICMLA08