Particle simulation of laser wakefield particle acceleration – M558
C.G.R. Geddes (M558 lead)
LOASIS program, LBNL, http://loasis.lbl.gov
W.P. Leemans, Program head; E. Esarey deputy & theory head
C. Benedetti, M. Chen, E. Cormier-Michel, E. Esarey, C.B. Schroeder

Oxford
W. Andreas, S. Bajlekov, N. Bourgeois, T. Ibbotson, S.M. Hooker
Simulations support LOASIS experiments and BELLA design

Outline

- BELLA project + collaborators: High gradient laser – plasma accelerators
- Quantitative modeling of self-trapped low ΔE experiments\(^1\) using new numerics\(^2\)
- Physics of controlled trapping for low momentum spread bunches: downramp experiments\(^3\) & colliding pulse injection
- Design of efficient 10 GeV stages for BELLA and laser plasma collider concept & emittance control\(^4\)
- GeV stages - Thomson gamma sources for SNM detection\(^5\)
- Compute requirements & outlook

\(^1\) Geddes et al., SciDAC Review 2009 & Nature 2004; \(^2\) Cormier-Michel et al., PRE 2008;
\(^3\) Geddes et al., PRL 2008; \(^4\) Cormier-Michel et al., ICAP 2009; \(^5\) Geddes et al., CAARI 2008
BELLA 40 J PW Laser – Components for a Laser Plasma Collider + Radiation

10 GeV stages

Energy spread & Emittance preservation

Injection + Staging

PW laser
40 J / 40 fs

Positron acceleration + PWFA expt.’s

Radiation sources

Will augment existing LOASIS experiments on two existing beam lines
LOASIS team – development of laser plasma accelerators

Staff
E. Esarey (T)
C. Geddes (S+E)
A. Gonsalves (E)
W. Leemans (E)
N. Matlis (E)
C. Schroeder (T)
C. Toth (E)
J. Van Tilborg (E)

Postdocs
E. Cormier-Michel (S)
J. Osterhoff (E)

Eng/Techs
D. Syversrud
N. Ybarraza
K. Sihler

Students
M. Bakemen (PhD)
B. Kessler
D. Kim
C. Lin (PhD)
G. Plateau (PhD)
S. Shiraishi (PhD)
T. Le Corre (M)
H. Vincente

Admin
O. Wong
M. Condon (0.5)
G. Rogers (0.1)

Collaborators include:
SciDAC team

Oxford: S. Hooker et al.
MPQ: F. Krausz, F. Gruener et al.
LOA: O. Albert, L. Canova
GSI: T. Stoehlker, D. Thorn
Simulation Collaborators

LOASIS: C.G.R. Geddes, C. Benedetti, M. Chen, E. Cormier-Michel
 E. Esarey, C.B. Schroeder, W.P. Leemans
Tech - X & U. Colorado J. Cary
Oxford W. Andreas, S. Bajlekov, N. Bourgeois, T. Ibbotson, S.M. Hooker
NERSC, visualization: W. Bethel, J. Jacobsen, Prabhat, O. Rubel,
 D. Ushizima, G. Weber
NERSC: M. Howison,...
DOE Scientific Discovery through Advanced Computing:
LBNL AMAC, CBP: R. Ryne, J.L. Vay, W. Fawley
UCLA: W.B. Mori, F.S. Tsung, C. Huang, M. Tzoufras, M. Zhou,
 W. Lu, S. Martins, M. Tzoufras, V. Dycek + collaborators at IST
USC/Duke: T. Katsouleas, X. Wang

Other collaborations include:
LWFA – Nebraska, B.A. Shadwick et al.;
Gas targets - STI Optronics, W. Kimura et al; LBNL APDEC, P. Collela et al
Alameda Applied Sciences – M. Krishnan et al
Simulation + theory required to model self consistent laser, wake, and bunch

Radiation pressure of intense laser excites space charge plasma wave which accelerates particles with high gradient

- Explicit particle in cell simulates required physics – resolves laser period
 - Mhours CPU for cm-scale GeV (VORPAL*)
 - Domain decomposition parallelization
 - present runs ~ 50cells^3/ processor

- Meter scale of 10 GeV stages – O[Ghours]
 explicit → scaling + new models

- Require improved accuracy & resolution (compute time) to model collider emittances

Energy gain \(\sim n^{-1} \) (10 GeV at \(10^{17}/cc \))
Length \(\sim n^{-3/2} \) (1m at \(10^{17}/cc \))
Gradient \(\sim n^{1/2} \) (10 GV/m at \(10^{17}/cc \))
Laser \(w_0,L \sim \lambda_p \) (100fs at \(10^{17}/cc \))
Depletion \(\sim \) Dephasing for \(a_0 > 1 \)

Simulations of past expt.’s: Geddes et al JPCS 2008; ScDAC Review 2009

Self trapped experiments: percent energy spread, physics, scaling

- Laser channeling: first low $\Delta E/E$ beams
 - 10 TW laser, 2mm plasma @ 2×10^{19}/cc
 - Accurately model bunch
 - VORPAL Simulation
 - Vis by O. Rübel
 - 3 mrad divergence, $\Delta E/E$ 4%, $E_{\text{peak}} \sim 170$ MeV
 - Geddes et al., Nature 2004*
 - Accurately model bunch

- 1 GeV beams, stable beams at 0.5 GeV
 - Leemans et al., Nature Phys 2006

- Capillary channels + low $n_e = \text{GeV}$ in 3 cm
 - 40 TW laser, 3cm plasma @ $4-5\times10^{18}$/cc
 - 1/4 of ‘04 density

- Simulations show physics of self trapping production of narrow ΔE:
 - Accurate modeling of phase space with interpolation & smoothing developed**
 - 100 MeV 3D production runs at 11kprocessor/36 hr, 2D 256 processor/1 hr

3-5 year outlook: routine 3D modeling at GeV & beyond; parameter scans & auto-analysis

VORPAL: Nieter et al., JCP 2004
Developing low emittance injectors: plasma downramp & colliding pulse

Process: ramp control of trapping reduces emittance

Validate: VORPAL simulations vs. multiple diagnostics

Shows: Bunches ~ 30fs long at formation -> injector

- Narrow energy spread, emittance preserved

Process: beat between two lasers injects particles

Separate: wake excitation, injection

- repeatability
- tunable energy
- reduce emittance by controlling injection

3-5 year outlook: extend resolution and use many runs to design low emittance injector
Develop efficient 10 GeV 40 J, collider-relevant BELLA Stages

- Use and verify linear theory predictions
 - Field $\sim 1/\lambda_p$ @ const. $a_0, k_p L_{\text{laser}}, k_p w_0$

- Starting to predict 10 GeV performance
 - ~ 1 m at 10^{17}/cc \rightarrow Ghours (explicit)
 - Laser spot size, length, effect of beam loading
 - Lorentz & envelope sim.s \rightarrow emittance
 - Outlook: loaded emittance, ΔE, shaping

Wake scales with density
Scaled simulations at $a=1$

Field $\sim 1/\lambda_p$

10^{19} cm$^{-3} = 120$ GV/m
10^{18} cm$^{-3} = 40$ GV/m

**Antonsen and Mora 1996

Leemans & Esarey, Phys. Today 2009; Schroeder et al AAC 08;
Cormier-Michel et al, Proc. AAC 200; Geddes et al PAC & SciDAC review 2009;
Cowan AAC 08; Vay PRL 07
New models - full scale 10 GeV simulation

Increased capacity needed for accuracy

Boosted computational frame* reduces scale disparity - allows 10 GeV stage simulations

*J.L. Vay et al. PRL 2007

Envelope model - reduced resolution requirement - allows 10 GeV stage simulations

Laser modeled as envelope + phase reduces required resolution

VORPAL – Cowan AAC 08; also in turboWAVE, & at NRL; WAKE, QuickPIC+quasistatic

3-5 year outlook: fast codes + new comp. capacity to accurately model collider stages for e-/e+ including very low emittance, radiation, scattering contributions, and staging
Compact plasma accelerators – BELLA PW laser and towards conceptual future LPLC & sources

Collider concept
Leemans & Esarey, Phys. Today 2009

~10 GeV stages
Current HPC Requirements

• Architectures: Cray XT

• Compute/memory load
 • 3.5 Mhours in 2009
 • production simulations up to 11k-processors – typical 4k (scheduling convenience)
 • 24 hours/run
 • Memory 100GB (<1GB/core)
 • processors communicate edge cells each time step to neighbors – order 30k-cells
 • Run startup often requires python scripts for set up
 • Analysis most efficient on fewer nodes with large memory – 4GB

• Data read/written
 • 2TB written per run – sets disk requirements
 • 50 Gb/checkpoint (approx every 30 minutes)
 • restart involves read of one checkpoint
 • 5 TB/year moved out of NERSC
 • Off line storage 20 TB
Current HPC Requirements

- Codes: VORPAL (WARP, other finite difference time domain)
 - Fields and fluids are represented on a structured Cartesian mesh
 - Plasma usually represented by particles by using 2nd-order leap-frog algorithm via PIC (particle-in-cell), or fluid
 - Laser and EM fields:
 - Explicit FDTD advance in lab or boosted frame OR
 - Envelope representation of laser field with Trilinos library suite (Aztec)
 - WARP and VORPAL also used for RF accelerators – relevant to staging

- Necessary software, services or infrastructure
 - HDF5 and assistance in tuning and working with it for large jobs
 - Tuning assistance – particularly file system
 - VisIt, IDL, perl, python
 - Visualization work and assistance in visualizing and analyzing large datasets, and in extracting physics data from them.

- Known limitations/obstacles/bottlenecks
 - Operators are all local, which enables local communication via MPI
 - Production simulations up to 11k-processors – limited by capacity/allocation
 - Scaling of parallel I/O (e.g. H5) needed especially for non-constant domain sizes
 - For production parameter exploration, tools for batch executing, checking and relaunching, and automated analysis
HPC Usage and Methods Next 3-5 Years

- Upcoming changes to codes/methods/approaches
 - Computational approach anticipated to scale to >100k-core
 - Radiation and scattering models will become increasingly important
 - GPU development in progress – VORPAL, OSIRIS, others
 - PIC codes (e.g. VPIC) also perform well on cell

- Changes to Compute/memory load
 - 50x scaling in resources anticipated to accurately design collider scale stages
 - New models in conjunction with new computers: laser envelope, Lorentz
 - This will be used to:
 - Simulate 10 GeV stages at high resolution to model collider/light source emittances
 - Simulate staging of multiple modules for high energies
 - Run multiple 3D simulations to explore parameter space to improve beam quality
 - important to allow simulations to predictively explore parameter space to guide experiments
 - Simulate particle injector at high resolution to determine combination of techniques to produce the required beam quality
 - 150Mhours/year
 - 500kcores @ 12-24hours for large runs + many at 5-50kcores
 - 100 TB memory (< 1 Gb/core)
HPC Usage and Methods Next 3-5 Years

- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 - Parallel file I/O such as H5 must be scaled to 10's - 100's of thousands of processors, and must be made robust to varying mesh sizes on different processors.
 - Communication of the edge information from each processor to processors handling neighboring domains is required each step- may need to be multi-layered on many-core or GPU systems

- Strategy for dealing with multi-core/many-core architectures
 - Algorithm scales to 100’s of k-cores at this time
 - Different communication can be used between cores and nodes
HPC Usage and Methods Next 3-5 Years

• Changes to Data read/written
 • 50+ TB for large runs – determines on line storage
 • 1 TB/dump (assumes some data subsetting developed – else ~ 50TB)
 • Off line storage 200TB

• Changes to necessary software, services or infrastructure
 • Parallel file I/O such as H5 must be scaled to 10's - 100's of thousands of processors, and be made robust to varying mesh sizes on different processors.
 • Data subsetting must be developed in line to reduce dump file size
 • Error checking and job-relaunch services that detect if a job has terminated partway through and automatically restart
 • Scans of parameter space are needed requiring automation to generate and run sequentially large numbers of jobs, and to extract the data from them.
 • Parallel visualization and analytics tools must be further developed, to provide similar functionality to well-known serial tools
Summary

- NERSC architecture, configuration and service requirements:
 - Parallel I/O scalability + access to data for analytics
 - Failure detection and ability to restart jobs

- With access to ~50X NERSC resources:
 - Design of collider relevant laser plasma accelerator stages & emittance
 - Many 3D simulations allowing exploration of parameter space to predictively design experiments
 - Simulate controlled injection and beam conditioning with high fidelity

- “Expanded HPC resources” important for project:
 - availability of 500+ kcores for large runs
 - batch execution of many runs at the 5-50kcore level
 - job error detection and restart services

- Any other special needs or NERSC wish lists?
 - Parallel analytics tools matching functionality of serial solutions
 - Development of H5 and other parallel file architectures & flexible domains
end
Simulation challenges

- Accurate kinetics and bunch emittance
 - Improve accuracy in momentum advance
 - EM dispersion (cerenkov and particle noise)
 - Mesh refinement at particle bunch
 - Noise control – fluids
 - Incorporate radiation & scattering

- Meter scale structures
 - Accurate reduced models
 - EM dispersion (laser propagation)
 - Error accumulation
 - Scaling

Others:
- Automation & data mining
- Detailed validation
Developed visualization and analysis
Two student projects + VACET

FastBit indexing and query, parallel coordinates*

VisIt 3D visualization

Interactive exploration of TB datasets

Fuzzy clustering in 6D phase space+peak detection**

* O. Rubel et al., accepted SC08
** D. Ushizima et al., sub ICMLA08