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1. Project Description

Pl: Robert Ryne (LBNL)
Senior personnel: Ji Qiang (LBNL), Cho Ng (SLAC), Bruce Carlsten (LANL)

* repo m669 supports BES accelerator design

e concept exploration; accelerator system & accelerator
component design; code development

* This presentation focuses on beam dynamics modeling for
future light sources, especially X-ray Free Electron Lasers
(XFELs)



The LCLS XFEL is a spectacular success
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What is so challenging about future XFEL modeling?

To answer this, need to see what's in an XFEL:
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Components of an XFEL accelerator

High brightness injector
* e gun + systems to shape & accelerate the beam in the first
~100 MeV

Complex “beam gymnastics” in the beam delivery system to
accelerate up to final energy, and to prepare the beam before
entering the FEL undulator

« flat beam transformers, emittance exchangers, chicanes,
bunch compressors,...

* seeding sections
« beam deflection systems
The FEL itself



Leads to new regime of high resolution,
multi-physics, beam dynamics modeling

* Requires
— nonlinear optics
— space charge
— structure wakes

— radiation I» very challening, extremely important!
— e"beam/laser interaction

} under control thanks to programs like SciDAC

« Extreme resolution and/or multi-scale modeling needed to
simulate e- beam/laser interaction (seeding) — included in BES

Accelerator R&D project



Light source milestone (2013, Ji Qiang et al)

— start-to-end parallel simulation of future light source
— real-world # of simulation particles (2 billion)

— interfaced/combined 3 key codes into a single
executable:
* IMPACT-T, IMPACT-Z, GENESIS

— included beam optics, 3D space-charge, wakes, 1D CSR
— 14 hrs on 2048 cores of Hopper



3D simulation of synchrotron radiation
has remained a major challenge

« Synchrotron radiation: arguably the least well modeled physical
phenomenon in e- linacs for future light sources

— most codes use a simplified 1D model
« Highly important to beam quality and beam stability:

— emittance degradation / ______ >

— microbunching instability #Z----"" R
/

imagine a billion ultra-
narrow flashlight beams
shining on each other

« challenging spatial
dependence: radiation
confined to very tiny
cone angle (~1/y)

besides difficult-to-model
spatial dependence, also
need to take into account
finite speed of light
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Exploring seeding schemes through
simulation is extremely challenging

Seeding: Impressing short A modulation on a beam so that
radiation grows from the impressed modulation, not from
spontaneous emission

— higher power, increased coherence, potentially shorter
undulators & reduced cost

Length scales: laser A is ~10-100 nm, bunch length ~0.1 mm

Resolution required: need to resolve features 10,000x times
smaller than the bunch length

Compounding the challenge: beam transport schemes under
study mix the transverse and longitudinal phase spaces. So the

transverse dimensions might also require high resolution!
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1. Project Description, cont.

* Scientific objectives through 2017:

* develop scalable, parallel beam dynamics capabilities
for BES light source design

* including high-resolution modeling of radiative
phenomena in 3D

* seeding

* shot noise effects

 parallel designh optimization

 applications to BES light source projects

e distribute & deploy capabilities to the community



2. Computational Strategies

We approach this problem computationally at a high level via
parallel particle-in-cell codes

The beam dynamics codes we currently use are primarily in the
IMPACT suite

IMPACT PIC codes are characterized by these algorithms:

* particle advance via maps and via numerical integration for a wide
variety of accelerator systems

* parallel Poisson solvers
* solvers for other phenomena (1D CSR, structure wakes,...)

Our biggest computational challenges are:
e communication associated w/ 3D space-charge solver

* charge deposition, field solution, field interpolation

Our parallel scaling is limited by communication

* some PIC codes scale well by using large # of particles; in our case, we
use the real-world # of particles, no more.



* We expect our computational approach and/or codes to
change significantly by 2017 (actually sooner)

* We have demonstrated on Hopper and Edison that a new

approach allows accurate calculation of 3D radiative effects
using a single-particle Lienard-Wiechert Green function
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Parallel optimization

* Besides individual simulations to evaluate a
specific design, we also have tools for parallel
design optimization

 We use a 2-level parallelization strategy

— 1 level for individual simulations of a single point
in parameter space

— 1 level for the optimizer

* e.g., use differential evolutionary optimizers with ~100
population members



3. Current HPC Usage

* Machines currently using: Hopper, Edison

e Hours used in 2013: 10M

* Typical parallel concurrency and run time:
* few thousand to 10K cores, 10+ hrs

* Largest runs to date: ~100K cores



4. HPC Requirements for 2017

(Key point is to directly link NERSC requirements to science goals)

 Compute hours needed (in units of Hopper hours):
>100M

* Changes to parallel concurrency, run time

* Our Lienard-Wiechert codes will scale to ~100K
cores for a "point" simulation, ¥1M cores for design
optimization

» usage for "typical" runs will depend on queue wait times

* Scratch space: 100 TB
» Aggregate bandwidth: 0.5 -1 TB/sec



5. Strategies for New Architectures

e Qur strategy for running on new many-core
technologies (GPUs or MIC) is:

— if NERSC plans to acquire a GPU-based system, we
will adapt the Lienard-Wiechert solver to make
use of it

* many FLOPs, but not much data movement

 To date we have prepared for many core by:
— exploration of using MPI+OpenMP



Collaboration w/ ASCR researchers has been,
and will continue to be, essential

ExaHDF5 team: parallel 1/O, analysis, vis.

» Chou, Wu, Rubel, Howison, Qiang, Prabhat, Austin, Bethel, Ryne, Shoshani, Parallel Index and
Query for Large Scale Data Analysis, to appear in SuperComputing 2011.

E. Wes Bethel et al (VACET):

* 0. Rubel, C. G. R. Geddes, E. Cormier-Michel, K. Wu, Prabhat , G. H. Weber, D. M. Ushizima, P.
Messmer, H. Hagen, B. Hamann, E. W. Bethel, Automatic beam path analysis of laser wakefield
particle acceleration data, Computational Science & Discovery, vol. 2, 015005 (2009)

* 0. Rubel and R. Ryne, CSR visualization using Vislt

H. Shan et al: code performance optimization

* H. Shan, E. Strohmaier, J. Qiang, D. Bailey, K. Yelik, Performance Modeling and Optimization of a
high energy colliding beam simulation code, Proc. Supercomputing’ 06

D. Higdon et al: statistical methods for inference, forecasting

« D. Higdon et. al, Combining Field Data and Computer Simulations for Calibration and Prediction,
SIAM J. Sci. Comput. Vol. 26, No. 2, pp. 448-466 (2004).

X. Li: multi-core performance optimization

DB: field_128.vtk
Cycle: 128
Proudoc:

Dipole CSR (O. Ruebel
and R. Ryne, LBNL)




ExaHDF5 plans

« Parallel I/0O in IMPACT, CSR3D, Warp

— scale up to 130K cores on Edison

— Benefit from ExaHDF5 performance scaling in other areas
such as plasma physics
* VPIC 2 Trillion particle simulation on 120,000 cores on Hopper

* VPIC next-generation runs involving 10 Trillion particles are being
planned



Conclusion

* The future of beam dynamics codes for light
source design & simulation...



CODES, CAPABILITIES & METHODOLOGIES FOR BEAM
DYNAMICS SIMULATION IN ACCELERATORS
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5. Summary

* We are on the verge of a new era in light source design & simulation

* New algorithms and high-end HPC will enable Lienard-Wiechert
particle-mesh simulations that include 3D radiative phenomena

* new tools to explore concepts such as seeding

* high resolution to accurately predict performance at very short
wavelengths

* shot noise effects
» parallel design optimization including 3D CSR effects
 We are already seeing improved performance on Edison

* 3D modeling of radiative effects (vs 1D as is done now) will place
significantly greater demands on our simulations
* will easily use 10x allocation increase, possibly much more
* use of GPUs if available would likely be very beneficial
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