Present and Future Computing Requirements Rational Catalyst Design for Energy Production

Andreas Heyden

Department of Chemical Engineering University of South Carolina, Columbia

NERSC BES Requirements for 2017 October 8-9, 2013 Gaithersburg, MD

Project Description

• Molecular understanding and design of

heterogeneous catalysis at solid-liquid interfaces (Applications: Biomass-to-Fuels, Biomass-to-Chemicals)

- Multi-scale, mixed-resolution modeling techniques
- Planewave DFT coupled with
 - Continuum solvation models
 - Classical molecular dynamics

Other Projects

- Molecular understanding and design of heterogeneous catalysis at solid-solid interfaces (Applications: Water-Gas Shift at metal-oxide interface sites)
- Molecular understanding and design of electrodes in solid oxide fuel/electrolyzer cells (Applications: Natural gas utilization / Renewable energy storage)
- Uncertainty Quantification in computational studies for improving the connection to experiments

Scientific Objectives for 2017

- Framework for simulating heterogeneously catalyzed reactions in liquid-phase environments
 - Successive improvement of the description of the effect of a liquid environment on reaction equilibria and kinetics
 - Planewave DFT (reaction network)
 - Implicit solvation (preliminary screening)
 - Explicit solvation (important elementary steps)
 - "Few" solvent coordinates part of reaction coordinate (ratecontrolling steps)

Scientific Objectives for 2017

Solvent effects

M. Faheem et al., J. Phys. Chem. C, 2012, 116, 22458-22462.

Scientific Objectives for 2017

Validation of implicit solvation by explicit solvation and free energy perturbation

Computational Strategies

- Integration of DFT and MD codes
 - DFT calculations in planewave basis (VASP)
 - DFT calculations in Gaussian-type basis (TURBOMOLE)
 - Classical molecular dynamics (DLPOLY)
 - Interfaces, automated input generation and output processing (FORTRAN programs and BASH scripts)

Computational Challenges

- Convergence of Gaussian-type orbitals for metal clusters + determination of spin states on metal clusters
- Scaling of DFT calculations
- Large number of tasks
- Maximum wall-clock in **high-throughput** queue (on Carver not just Hopper)

Current HPC Usage

Period	Resource	Core-Hours used (million)
January 2013 – December 2013	NERSC (Carver/Hopper)	3.5 (allocation)
January 2013 – December 2013	NERSC (Edison)	1.0 (estimated)
October 2012 – September 2013	XSEDE (Kraken/Stampede/Steele)	3.0
October 2012 – September 2013	PNNL (Chinook)	3.7
January 2013 – December 2013	USC (ACM/Planck/Maxwell)	>1.0

Current HPC Usage

Job Type	QM	ММ	QM/MM
Number of cores	8-64	8-16	16-48
Run time (hours)	12-48 (240 for TS)	4-8	12-100+
Jobs per year	>10 k	100-200	100-200
Total data read/written	1 GB	10-50 GB	1-2 TB
I/O bandwidth (per minute)	Write: only at end	Write: 100 MB	Read+Write: 2 GB

HPC Requirements for 2017

- Expected usage: >20 million core-hours
- General shift towards high-throughput computing
- Considerably larger share of QM/MM jobs
- No significant changes expected in HPC requirements on per job basis (already relatively large systems, DFT functionals get more complex, however, processors also get faster)

Strategies for New Architectures

- No plan for modification of any code
- No constraint for switching, if modified codes are available

Recommendations for System Configuration

- TURBOMOLE requires Cluster Compatibility Mode (CCM) on Hopper/Edison.
- For hybrid QM/MM jobs, VASP, TURBOMOLE, and DLPOLY must all run together.
- Before CCM was available (April 2012), Carver was the only choice on NERSC.

Summary

 What new science results might be afforded by improvements in NERSC computing hardware, software and services?

Coming closer to realizing the aims of the White House MGI, e.g., high-throughput screening and rational design of complex catalytic systems relevant for biomass conversion to fuels and chemicals, energy storage, and energy independence

Summary

 NERSC generally refreshes systems to provide on average a 2X performance increase every year. What significant scientific progress could you achieve over the next 5 years with access to 32X your current NERSC allocation?

Currently our eSMS – explicit solvation method for solid surfaces is ~2 orders of magnitude slower than gas phase computations. As a result, a 32X speed increase would permit the routine application of eSMS for rational catalyst design studies

Summary

- What "expanded HPC resources" are important for your project?
- Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science

The availability of a cluster system such as Carver & Stampede (UT) with a long max. wall clock time benefits many quantum chemistry codes that currently do not scale to hundreds or thousands of processors