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| C/Y\Qi Why Combustion

83% of U.S. energy comes from combustion of fossil fuels
e National goals

— Reduce greenhouse gas emissions by 80% by 2050

— Reduce petroleum usage by 25% by 2020

e New generation of high-efficiency, low emission
combustion systems

— New designs for IC engines such as HCCI Nitrogen-diluted hydrogen jet
— Fuel flexible turbines for power generation in crossflow

e Rapidly evolving fuel streams
— Biodiesel for transportation
— Syngas from gasification processes
— Alcohols

* These factors significantly increase the design space for
new combustion technologies

NOx emissions from a low
swirl injector fuels by H2
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@ Why Exascale

Current design methodologies are largely
phenomenological

— Combustion models based on simplified theory

— Global-step simple chemical kinetics

e Significant increase in computational capability
will dramatically reduce design cycle for new
combustion technologies and new fuels

— Simulations with higher physical fidelity, particularly

chemistry at high pressure 9 f"ﬁ‘g‘r

— More predictive science-based turbulence/ %o J
chemistry interaction models é ) DleselEngine  GasalineEngine  HCCI Engine

(Homogeneous Charge
Compression Ignition)

e Address new mixed-mode regimes driven by
efficiency and emissions

e Differentiate effects of alternative fuels
e Focus is on first principles direct numerical
simulation methodologies
— Science base for novel fuels at realistic pressures

— Not addressing complexity of geometry in
engineering design codes
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}\/\ Fundamental Turbulence-Chemistry Interactions

| CKE. Motivated by Advanced Engines and Gas Turbines

10

Higher fuel efficiency and lower emissions
driving combustion towards more dilute,

Conventional

k)
©
g
fuel lean, partially-premixed conditions 3 Combustion
2 1.07 LTC Regime
* New mixed-mode combustion regimes: 2 COFrene%Lfrsntsn
stratified premixed flames, autoignition, 5
extinction exhibiting strong finite-rate o
kinetic effects 0.1 . |
1000 1500 2000 2500 3000

Local Flame Temperature - K

e Strong sensitivities to ignition fuel
chemistry — differentiate the effects of
fuels, e.g. oxygenated biofuels

e Preferential diffusion effects — synthesis
gases enriched with hydrogen for carbon
capture storage in gas turbines for power
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CRE Direct Numerical Simulation — S3D

¥

// » Used to perform first-principles-based

DNS of reacting flows

» Solves compressible reacting Navier-

Stokes equations
* High-fidelity numerical methods

* Detailed reaction kinetics and
molecular transport models

* Multi-physics: sprays, radiation and
soot through SciDAC

* Ported to all major petascale
platforms

 Particle and flame element tracking
* In situ analytics and visualization

» Refactored for multi-threaded, many
core heterogeneous architectures

Chen et al., Comp. Sci. Disc., 2009

DNS provides unique
fundamental insight into the
chemistry-turbulence
interaction
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Office of Science ItS
Advancing America's Science

and Industrial Competitiveness
\¢

Combustion DNS Enabled by
Large Computer Allocations

1| extinction/reignition
2 Re = 14000-22,000

30 species DME, 4 billion grids
60 M cpu-hr Titan (20PF hybrid
CrayXK7)

SciDAC
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Combustion
and Flame

COMPUTATIONAL
SCIENCE&DISCOVERY
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CRE Roles of DNS
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¥

K/ - Glean fundamental insight into ‘turbulence-chemistry’
interactions in canonical configurations — understanding
causality between turbulence, mixing and reaction

« Evaluate RANS and LES subgrid models
» Evaluate experimental assumptions: 1D->3D,

* ldentify empirical reduced manifolds for complex
chemical processes

 Validate chemical mechanisms in the presence of
unsteady transport
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CO/H, C,H, and
DME jet flames Turbulent Counterflow

e)‘(ti'nctionlréignition

H,/air Stratified Flames ; v ;. ) Lifted H2 and

C,H, jet flames
in hot coflow

premixed
and
stratified
CH, /air
Bunsen

H,/air Flame-

H, and CO/H, Jets in Boundary Layer
Crossflow Interaction
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2\ Motivation: Understanding Stabilization of

C Lifted Flames in Heated Coflow

v
K/ What is the role of ignition in lifted flame stabilization?
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Chemiluminescence from diesel lift-off stabilization for #2 diesel,
ambient 21% O,, 850K, 35 bar courtesy of Lyle Pickett, SNL
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& DNS of Lifted Ethylene-air Flame in a Hot Coflow

¥

,/:/3D slot burner configuration: C. S. Yoo, et al. Proc. Comb. Inst. 2011

— L,xL,xL,=30x 40 x 6 mm? with

— 1.28 billion grid points

— High fuel jet velocity (204m/s); coflow
velocity (20m/s)

— Nozzle size for fuel jet, H = 2.0mm

— Re;,, = 10,000

— Cold fuel jet (18% C,H, + 82% N,) at 550K,
N = 0.27

— Detailed C,H,/air chemistry, 22 species 18
global reactions, 201 steps

— Hot coflow air at 1,550K
Ethylene-air lifted jet flame at Re=10000
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Crr  Lifted Turbulent DME Jet Flame at 40 atm

/ /
K/ * AMR and S3D comparisons
 AMR to adapt around thin flame front and turbulent jet

* Run in progress on Edison

Heat release rate
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@F Turbulent Premixed H2/air Counterflow

Flame with Product Stratification

e Investigate the effect of turbulent strain and enthalpy stratification on H,/
air premixed flame structure and local extinction/reignition in turbulent
counterflow in the thin/broken reaction zones regime

e Perform joint DNS (S. Lyra, J. Chen, H. Kolla) and OH LIF experiments (J.
Frank and B. Coriton) of highly turbulent, H,/air flames stabilized against

non-adiabatic stoichiometric combustion products

* The configuration provides a compact cylindrical volume delimited by the
two co-axial nozzles & promotes local flame quenching and re-ignition
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Experimental Counterflow Configuration

H,/Air Turbulent
Premixed Reactants

N,

Turbulent

Conjcopr
of Mixing Localized
Layer |\ "——-—--=---=---- Extinction
< 12.7 mm —>
Hot Product Stream
T, = 1475K
®p = 1.0

Figure 1: Schematic of a turbulent counterflow flame. The OH-LIF signal
was analyzed in the 10 x 10 mm? red dashed square box and the DNS
data in a 6.6 x 8 x 8 mm? rectangular volume denoted by the blue dotted
box in the xy-plane of the schematic. The full DNS domain includes the
co-flow and is 12x17.5x17.5 mm3.
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@ Flame Recovery by Ignition

Heat Release

e Ignition kernel forms within the extinguished region in a low x region
e Relight starts a cusp close to the hot products and forms a thin reacting surface

e Eventually the burning intensity of the surface increases &the flame re-ignites supported by
the continuous supply of reactants and the addition of heat from the products
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C}/\}\?F Comparison with Experiments

COMBUSTION RESEARCH FACILITY
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Similar flame structure as experimentally measured

Flame thickness, expressed in terms of mean progress variable ¢, is 2-3 mm, consistent
with experimental data measured at similar turbulence & strain
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CRE. Petascale Codes

%/o S3D S3D simulation

of HO, ignition

— (Cnmnroccihla farmiillabnn

Target computational capability at exascale:

» High-fidelity physics

e Detailed chemical kinetics

* Multicomponent species transport
» Supports both compressible and low Mach number formulations
» Block-structured adaptive mesh refinement
« Higher-order spatial discretizations
« Higher-order temporal integration
« Support for embedded UQ
* In situ analytics

— HyDrid parallel moadel witn IVIFI + upenivir
LMC simulation

of NOx emissions
from a low swirl
injector

ExaCT co-design is working on a new code base
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N\ S3D Solution Algorithm

e Method of lines solution:

— Replace spatial derivatives with finite-difference approximations to
obtain coupled set of ODEs

— 8th order centered approximations to first derivative

— Second derivative evaluated by repeated application of first derivative
operator

e [ntegrate explicitly in time

e Thermochemical state and transport coefficients evaluated
pointwise

e Chemical reaction rates evaluated point-wise
e Block spatial parallel decomposition between MPI ranks
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N\ S3D Solution Algorithm

e Fully compressible formulation
e Fully coupled acoustic/thermochemical/chemical interaction
e No subgrid model: fully resolve turbulence-chemistry interaction

e Total integration time limited by large scale (acoustic, bulk velocity,
chemical) residence time

e Grid must resolve smallest mechanical, scalar, chemical length-
scale

e Time-step limited by smaller of chemical timescale or acoustic CFL

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



S3D Parallel Weak Scaling Performance
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C/Y\?li Current HPC Usage

NERSC and LCF machines: Hopper, Edison and Titan
e 2012-2013 cpu-hrs used: Hopper: 29M, Edison: 2M+, Titan: 50M+

e Typical parallel concurrency and run time: 20-150K cores, ~10-20
M cpu-hrs

e Number of runs: 3-4
e Data read/written per run: ~300TB (200 restart files)

e Memory used per (node/core/globally) 2.3TB (7 billion grids, 14
dof, 3 times size of state= 2.3 TB) global

e Needed software (MPI, ADIOS, Vislt, VISUS, ParaView, MatLab,
HDF5)

e Data resources used (scratch/HPSS/GFS) 300TB scratch, ~1 PB HPSS
e Amount of data stored: 3.7M SRU’s

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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CRE HPC Requirement 2017

» Compute hours needed (in units of Hopper hours): ~1 billion
cpu-hrs

* Changes to parallel concurrency, run time, number of runs per
year: 100-400K cores, 4 runs per year, 3 weeks on 400K cores

* Changes to data read/written: rate at which data is written out
wont’ scale with problem size, I/0 rate limited — move
analysis/UQ/viz in situ, end-to-end workflow, staging, NVRAM

* Changes to memory needed per ( core | node | globally )
limited by memory bandwidth/bisection bandwidth and not
aggregate memory, communication with stencils is expensive,
looking at exploiting both data and task fine-grain parallelism

* Changes to necessary software, services or infrastructure —
staging middleware, in situ workflow, dynamic runtime, DSL
compiler+ low level IR, combustion portal for sharing data/
software with community

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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%A:RF Strategies for New Architectures

e Hybrid Architectures e.g. Titan
e Deferred Dynamic Execution and DSL
e |n situ analytics and UQ

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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@F OLCF Center for Accelerated Application

Readiness on Titan

e S3D Migration strategy: (2-3 FTE’s for 1.5 years, Cray, Nvidia,
Sandia, ORNL, NREL)

1. Requirements for host/accelerator work distribution
2. Profile legacy code

3. Identify key kernels for optimization
— Chemistry, transport coefficients, thermochemical state (pointwise)
— Derivatives (reuse)

B

Prototype and explore performance bounds using Cuda

o

. “Hybridize” legacy code: MPI for inter-node, OpenMP intra-node
. OpenACC for GPU execution

7. Restructure to balance compute effort between accelerator and
host

(@)
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@F Summary of Titan port

e Significant restructuring to expose node-level parallelism

e Resulting code is hybrid MPI+OpenMP and MPI+OpenACC (-DGPU
only changes directives)

e QOptimizations to overlap communication and computation
e Changed balance of effort

e For small per-rank sizes, accept degraded cache utilization in favor
of improved scalability

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Lessons Learned

Reworked code is ‘better’: more flexible, well suited to both
manycore and accelerated

— GPU version required minimal overhead using OpenACC approach

— Potential for reuse in derivatives favors optimization (chemistry not
easiest target despite exps

e Majority of work is done by GPU: extra cycles on CPU for new
physics (including those that are not well suited to GPU)

e We already have ‘Opteron + GPU’ performance exceeding by factor
of 2 over Opteron performance

e We have the ‘hard’ performance
e Specifically moved work back to the CPU
e Production run on Titan with OpenACC S3D
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//\RF Future Algorithmic Improvements

e Second Derivative approximation
e Chemistry network optimization to minimize working set size

e Time integration schemes - coupling, semi-implicit chemistry,
spectral deferred correction

e Several of these are being looked at by ExaCT co-design center,
where the impacts on future architectures are being evaluated

— Algorithmic advances can be back-ported to this project

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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e Location of analysis compute resources
— Same cores as the simulation (in-situ)
— Dedicated cores on the same node (in-situ)
— Dedicated nodes on the same machine (in-transit)
— Dedicated nodes on external resource (in-transit)

e Synchronization and scheduling

— Execute synchronously with simulation
every nt" simulation time step

— Execute asynchronously

e Data access, placement, and persistence

— Shared memory access via hand-off / copy

— Shared memory access via non-volatile near node
storage (NVRAM)

— Data transfer to dedicated nodes or external
resources

Hl simulation

| Trre Rich Design Space of Workflows at Exascale

Il analysis

network communication

shared cores I

dedicated cores
on same node

dedicated separate nodes

synchronous

time
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)\ ,/ An empirical study on Titan demonstrates hybrid workflow
N\
‘Q/@

! CRE architectures show promise for minimizing impact to the simulation

* Primary resources: execute main simulation & in situ computations

e Secondary resources: staging area for in transit computations
Bennett et al. SC12

M S3D Min-situ MW data movement ™M in-transit

in-situ statistics Minimal
impact Profound impact
reduction for non-
} scalable algorithms

hybrid statistics
in-situ visualization Significant

impact
hybrid visualization P

hybrid topology

simulation

0] 2 4 6 8 10 12 14 16
seconds
* Simulation size: 1600x1372x430 * 4896 cores total: 4480 in situ /
* All measurements: per simulation time step 256 in transit / 160 scheduling
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Domain-Specific Languages

A domain-specific language (DSL) is a language of
reduced expressiveness targeted at developers in a
specific, focused problem domain

e Perfect fit for hybrid many-core architectures.

— Influenced and driven by both the domain and
architecture -

— Contributes directly as an enabling technology that
insulates applications from the complexity of the
architecture. Specialized software that works well with

complex hardware.

e Starting points:

— Team has previous experience in DSLs via ASC PSAP
(Stanford) — unstructured CFD, DSL with LLVM (LANL)

— LLVM Common IR for vendor toolchain interactions and
supporting infrastructure (not building compiler from
scratch). Using as FastForward interface for code |
generation (with AMD and NVIDIA). Intel? IBM?

— Orion Stencil DSL

— Memory-hierarchy-aware programming model and
runtime (Legion — leveraging initial DARPA funding)

— Terra Language (DSL building blocks)

 Auto-tune
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of data

— Legion tasks operate on logical
regions, specifying required
privileges (read-only, read-write,
reduction) and coherence
(exclusive, atomic, etc.)

— Mapping of tasks and regions
onto processors and memories.
Programmable from both domain

and architecture points of view

e Programming based on logical regions
to hierarchically describe organization

C}\/}}F Legion: Programming Locality and
/ Independence

00

VAN

Ghost

Owned

All Cells
All Private Boundary
Cells Cells

i

L3$

L2$

it
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CRF. Exposing Locality and Expressing Parallelism in S3D

/ Tasks are coded in familiar sequential « Straightforward port of S3D to Legion:
style (subtasks look like function calls). » Results in identification of 100's of

e Legion runtime uses region indeper)dent tas.ks by runtime

information to automatically extract ) A”OWS interleaving of up to 100's of
parallelism and map tasks using the mter-nod'e trgnsfers tOI hide
same data together to benefit from communication latencies.
locality. » Has a code structure that is very

e Current S3D Fortran has no task similar to current Fortran code

parallelism (interleaves 6 inter-node S3D Data Flow Graph in Legion
transfers at a time. T -

Aiken, Bauer, Treichler S S
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N k Paralleli
CP_I:L S3D Task Parallelism

e One call to RHSF as seen by the Legion runtime
— Arrows indicate true data dependences
— Width == task parallelism
— H2 Mechanism (9 species)
— Heptane (52 species) is even wider

5/14/2013 33
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| A\ Intrusive Uncertainty Quantification - Chemistry

CRE.

AL Models are Source of Error in DNS:

engineers in the fuels industry (BP, Exxon) on what
chemical properties need to be pinned down more
accurately for optimal utilization of a given fuel

e Embedded chemistry model source of uncertainty
— Reaction rates
— Missing reactions
— Transport coefficients

e Combustion intermittency characterized by space-time
localized phenomena of interest, tractable for UQ

e Solve adjoint equations backward in time: need the primal
state at all times (data management opportunity for co-
design)
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Future Directions

e Develop more complete models for exascale combustion simulation

— Architecture aware AMR algorithms
e |ncorporate interconnect topology into AMR data layout

e Dynamic load-balancing that incorporates communication costs, data
movement and dynamic machine behavior

— Capture model for complete work flow — solver, analytics, UQ
e Encapsulate all aspects of analysis into performance model
e Explore hardware tradeoffs with vendors and CS collaborators
— Refined analysis of node architectures
— Analysis of network behavior for AMR at scale
— Explore tradeoffs for machine balance
e Focused interaction with programming environment community to

ensure that future programming models will support effective
expression of methodology needed for combustion simulation
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CRF 30X faster machine in 2017 will enable us to push
- " closer to aero-thermo-chemical regime of
% compression ignition engines and gas turbines

1. Higher pressure (1 atm vs. 30 atm.)
2. Higher Turbulent Reynolds number (1000 vs. 3000)
3. Complex Fuel Chemistry (methane (C1) vs. n-heptane (C7))

 Lifted DME or n-heptane diesel jet flames at high
pressure and turbulent Reynolds numbers of
3000 (jet Reynolds numbers of 30000)

« Natural gas jet-in-crossflow into a vitiated cross-
stream for flashback safety compared to
laboratory gas experiments

« Spherically expanding turbulent premixed flames
at moderate pressure (5-10 atm) with lean DME
compared with experiments as part of CEFRC
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Thank you!
Questions
jhchen@sandia.gov
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