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Talk Outline

SEAM Geophysical Modeling Project — Its Really Big!

Geophysical Imaging (Seismic & EM) — Its 10 to 100x Bigger!

— Reverse Time Migration

— Full Waveform Inversion

— 3D Imaging & Large Scale Considerations

— Offshore Brazil Imaging Example (EM Data Set)

Computational Bottlenecks

Computing Alternatives
— GPU’s & FPGA’s
— Issues



SEAM

SEG Advanced Modeling

Why ? So that the resource industry can tackle
grand geophysical challenges (Subsalt
imaging, land acquisition, 4-D, CO2,
carbonates ......)




SEAM Mission

Advance the science and technology of applied
geophysics through a cooperative industry effort
focused on subsurface model construction and
generation of synthetic data sets for geophysical
problems of importance to the resource
extraction industry.

SEAM

SEG Advanced Modeling /\I\\
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SEAM PROJECT
Seismic Modeling Considerations

65,000 shots

450,000 traces per shot

Traces 16 seconds length samples at 8 ms

Data volume per shot: 3.5GB

228 TB Disk Space required for all shots & traces
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THE MARINE CSEM/MT METHOD

Deep-towed Electric Dipole
transmitter

— ~ 100 Amps
— Water depthto 5to 7 km | ;
— Alternating current 0.01 to 3 Hz - mme

Horizontal electiic dipole Source

— ‘Flies’ 50m above sea floor’

Seafloor MT receivers
— Measure orthogonal E & H

The Geophy5|cal Signature

Oil & gas reservoirs electrically
resistive than background media

— A non seismic indicator

— Still requires seismic data to constrain
Interpretation

Data Volumes ~ 1% to 10% seismic
— Still ~2TB




~ GEOPHYSICIAL IMAGING

— 3D Reverse Time Migration
e Large Scale Computations: 1,000s Cores, Weeks of Processing

— 3D Full Waveform Inversion
* |terative reverse time migration
* Promises Much Greater Image Fidelity
* Formidable Numerical Issues — Local Minima, Very Good Starting Models Required
* Frontier Research Area
* Enormous Computation: 10,000’s Cores, Months of Processing

Electromagnetic (CSEM & MT)
— 3D Full Waveform Inversion
e Provides information on non-seismic attributes
e Complements seismic imaging — through lower resolution
e Constrained by seismic imaging
e Computational demands also big: 1,000s to 10,000s cores

Joint Seismic-Electromagnetic Imaging
— The Holy Grail ?
* Frontier Research Area
* Grand Challenge Problem
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Wave Equations for Geophysical Imaging

Acoustic Waves

Time Domain Frequency Domain
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Electromagnetic Waves

V xV xE, +iouc E=S.

Discretization Methods: Finite Differences, Finite Elements
Solution Methods: Explicit, Implicit — iterative Krylov solvers for 3D problems
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Geophysical Imaging
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Imaging Condition : cross correlation of the forward and back propagated wave fields —
all shots, all geophones
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Reverse Time Migration: main algorithm

For each shot (s(r;),i=1,..n)
1/ Solve Forward Propagation Problem and Store Wavefield

For t=t,,...t ., intime or =0, ...,0.,, infrequency
Compute source wavefield at time t or frequency ®
Store wavefield

End

2/ Solve Back Propagation Problem and Apply Imaging Condition

Fort=t__,...t, intime or o=0, ...,0,. infrequency
Compute receiver wavefield at time t or frequency ®
Read forward wavefield at time t or frequency ®
Compute imaging condition

End

3/ Update Image

End



Full Waveform Inversion: main algorithm

For Model Update(k); k=1 to k., or Until Convergence

For each shot (s(r,),i=1,..n)
1/ Solve Forward Propagation Problem and Store Wavefield

For t=t,...t, . intime or o=o, ...,0.,, in frequency
Compute source wavefield at time t or frequency ®
Store wavefield

End

100’s
Iterations

2/ Solve Back Propagation Problem and Compute Gradient of the Error Functional

Computing
Cost 100x RTM

For t=t _,,,...t, intime or =0, ...,0,,, infrequency

Compute receiver wavefield at time t or frequency ®
Read forward sweep wavefield at time t or frequency ®

Compute gradient
End

3/ Update Attrubutes Using Simple Line Search (2 forward solves per shot)

4/ Compute Data Misfit; if < tol Stop, Otherwise Cycle Model Update Loop
End ':}l A
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3D GEOPHYSICIAL IMAGING

e Why3D?
— Data acquisition is 3D
e 2D interpretation often not appropriate

— Prospective Oil & Gas Reservoirs & Targets Inherently 3D
e complex geology

* Philosophy on 3D Modeling & Inversion Methods
— Interpretation must be as accurate as possible
* high stakes; offshore platforms & drilling - 100’s millions of dollars

— Treat large-scale nature of the interpretation problem
* High density Seismic, CSEM & MT data sets; millions of data points
e Large-scale imaging volumes; millions of image pixels

— Avoid approximations
 Methods must be as accurate as possible & robust & reliable




LARGE-SCALE CONSIDERATIONS

Require Large-Scale 3D Modeling and Imaging Solutions
— 200 million field unknowns - forward (fwd) problem
— Imaging grids 400 nodes on a side

Parallel Implementation
— Multiple levels of parallelization
* Model Space (simulation and inversion mesh)
* Data Space (each transmitter-receiver set fwd calculation independent)

* Installed & tested on multiple distributed computing systems; 10 — 10,000s
processors/cores

Above procedure satisfactory except for very largest problems
— To treat such problems requires a higher level of efficiency

Optimal Grids
— Separate inversion grid from the simulation/modeling grid
— Potential for significant solution acceleration ~ order of magnitude
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OFF SHORE BRAZIL CSEM DATA
3D Image Processing Requirements

3D Data and Imaging Volumes
— nearly 1 million data points, 207 effective transmitters
(reciprocity processing significantly reduces number of transmitters)
— more than 27 million modeling cells

(a large subset to be updated within the inversion process)
Image Processing Linux Clusters

— 1024 tasks with Infinband fabric => several months of processing time
Use Blue Gene (L) Super Computer for Faster Time to Solution

— 32 766 processors/tasks used to image the data
— each task has only 250 Mbytes memory
(requires fine grained model decomposition over 512 tasks)
— 64 data planes employed in the image processing
— delivers imaging results in 24 hours compared to several months
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OFF SHORE BRAZIL
3D CSEM IMAGING EXPERIMENT

23 sea bottom detectors Isotropic Conductivity Model:
10 sail lines -- can not fit broadside data
3 transmitting frequencies Anisotropic Model Required:

1.25,0.75 and 0.25 Hz -- horizontal & vertical conductivities
Survey coverage ~900 km?
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3D Electrical Conductivity Imaging
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Computational Bottlenecks

Forward and Backward Solves
Data 10 & Memory (seismic)
Time to Solution

Multiple Imaging Experiments Required

— Assess Model Uncertainties
— Test Different Starting Models
— Test Different Noise Assumptions

Scale Problem Up to Ever More Cores
— Impractical; power demands and cost



/ Power is an Industry Wide Problem

o, ey st (2% of US power consumption and growing)
@ NEWS.com T i
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Power could cost more than servers, Gungla warns

By Sbephen Shankdand

Staff Writer, CHET News.oom

Publishesd: December 5, D005, 4:00 AM PST
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; “Hiding in Plain Sight, Google Seeks More Power”,
Ehe New York@imes 1y john Markoff, June 14, 2006

MNew Google Plant in The Dulles, Oregon,
from NYT, June 14, 2006
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Computing Alternatives

GPU’s and FPGA’s — Big Opportunities in Seismic & EM Imaging

— 10x performance

— Keeps Cooling and Power Cost Manageable
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TIO = Tesla I0-series
GBO = GeForce BB00 GTX
GA = GeForce 7900

GTX
GFO-5I2 = GeForce 700 GTX 512

G0 = GeForce 7BO0 GTX
NVA0 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX SB800
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Issues
— GPU’s and FPGA’s Can Be Difficult to Program
— Peak Performance Can Be lllusive (jungle programming)

— 10 Constrained ?
— Double Precision ?
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