

STANFORD INSTITUTE FOR MATERIALS & ENERGY SCIENCE

T. P. Devereaux

Spectroscopy and Light-Matter Interactions

Collaborators – B. Moritz, Z.-X. Shen (SLAC/Stanford), J. K. Freericks (Georgetown), Z. Hussain (LBNL), R. T. Scalettar (UC-Davis). Machines used: Bassi, Jacquard, Franklin, Hopper.

New & future light sources

Using x-rays to study materials science

X-rays capabilities

- Driving chemical transformations by controlled optical or infrared pulses and understanding the atomic and electronic transformation with x-rays.
 - to capture, with snapshots on the femtosecond timescale, the making and breaking of chemical bonds and the crucial transition-state intermediates in chemical reactions.
- Understanding of the origins of nanoscale charge and spin order and their dynamics in correlated materials through high-resolution energy- and time-dependent x-ray spectroscopies.
 - to visualize through ultrafast x-ray motion pictures the performance limits of materials, e.g., the speed limit of reliable switching of a spintronics device.

Photon Spectroscopies...

(A)

(B)

(C)

hv,

 $hv_i + |\Psi_N\rangle \Rightarrow |\Phi_N\rangle$

 $hv_i + |\Psi_N\rangle \Rightarrow |\Phi_N\rangle \Rightarrow hv_s + |\overline{\Psi}_N\rangle$

Photoemission (PES, XPS) – measures occupied density of states

Absorption (XAS) – measures unoccupied density of states

Technique

q-resolved RIXS endstation

hv,

Computational Approaches to Photon Science

Quantum Monte Carlo for Spectroscopy

Auxiliary Field QMC and MEM

Finite Temperature, Imaginary Time Green's Function Formalism

Trotter-Suzuki Decomposition

 $\beta = L\Delta\tau$

Hubbard Stratonovich Transformation

Sample the Auxiliary Field HS variables with "Boltzmann weight" equal to the product of two determinants

White et al - Phys. Rev. B 40, 506 (1989)

Limitations:

• Trotter Error ($\Delta \tau^2$)

• Fermion Sign Problem

• good statistics needed for post-processing.

- not memory/storage intensive.
- Markov "perfectly" parallel under weak scaling ~ 128-256 procs.

Limitations

- resolution in momentum space.
- warm-up overhead limits scalability.
- could be mitigated by storing and swapping configurations. NERSC 2/10

DQMC - Electron vs. Hole Doping

Exact Diagonalization Routines for X-ray spectroscopy

Quantum Clusters + DFT Sparse Matrix ED Hilbert spaces ~ 10⁸

Energy loss: $\omega = \omega_2 - \omega_1$ Momentum transfer: $q = k_2 - k_1$ Resonance: $\omega_1 \sim \omega_{edge}$

$$I(\omega_I, \Omega = \omega_I - \omega_F) \propto \sum_f \left| \sum_i \sum_{4p} \frac{\langle \psi_f | \psi_{ci} \rangle \langle \psi_{ci} | \psi_0 \rangle}{E_{ci} + \epsilon_{4p-1s} - E_0 - \hbar \omega_I - i\Gamma_1} \right|^2 \times \delta \left(E_F - E_I - \hbar \Omega \right)$$

Sparse Matrix ED

-PARPACK: Parallel Lanczos-Arnoldi iterative matrix diagonalization. -Superlinear strong scaling up to ~10K procs. w/ ParMETIS: parallel graph partitioning and fill-reducing matrix ordering .

Limitations

exponential scaling with Hilbert space.memory limited.

Science Driver: Time-resolved pumpprobe photoemission in charge density wave material TbTe₃

F. Schmitt et al, Science **321,** 1649 (2008)

• Energy, momentum, and time-resolved spectral function.

- Spectral weight shifts dramatically; CDW gap "closes".
- Oscillation frequencies set by CDW & lattice phonons. 10

LCLS – a new era of science

Relativistic electron bunches see length contracted alternating magnets

- World's longest linear accelerator producing the first hard x-ray free electron laser 1.5 Å wavelength.
- Billion times brighter than any other light source.
- pulse width 10-100 femtoseconds (or less).
- Experiments underway, open for users Fall 2009.

Time-domain non-eq. spectroscopies

2.25M cpu-hrs INCITE Award

Double-time Greens function on Keldysh contour using DMFT – include fields exactly to all orders (Moritz, Freericks, TPD) arXiv:0908.1807

Bloch oscillations in metal U<Uc

Pump-probe DMFT formalism

Nonequilibrium DMFT

- Recent formulation of DMFT for nonequilibrium problems Freericks *et al.*, *Phys. Rev. Lett.* **97**, 266408 (2006)
- Evaluate the contour-ordered, double-time Green function on the Kadanoff-Baym-Keldysh contour

$$t_{\min} \xrightarrow{t=0} \mathbf{A}(t) \neq 0 \qquad t_{\max}$$

• Lesser Green function:

$$G_{ij}^{<}(t,t') = i Z_{eq}^{-1} \operatorname{Tr}[e^{-\beta H_{eq}} c_{j}^{\dagger}(t') c_{i}(t)]$$

• Include the effects of strong driving field through Peierls' substitution - $k \rightarrow k - e\mathbf{A}(t)$

- Iterative solution of coupled set of integral equations.
- critical elements local Green's function: matrix inversion and multiplication of dense complex matrices.
- wall-times limit the number of iterations per run.
- GPUs can be utilized (simple BLAS and LAPACK).

Performance and Resources

- Performs similarly on a number of platforms – Cray XT3, Cray XT4, HP Beowulf, Sun Opteron, SGI Altix
- •Dependent on cache size
- Message passing bottleneck overcome with a recursive binary gather to improve scaling beyond 1000 processors
- •INCITE award -2,250,000 CPUhrs.

Soft x-ray consortium @ LCLS to begin spring 2010.

Pump-probe ultrafast chemistry

Magnetic imaging

X-ray scattering spec.

Five prots for mounting the spectrographs to perform q-resolved RIXS. Enough momentum transfer to cover ~75%BZ at Mn L-edge and 100% BZ at Cu L-edge.

• Combine 10⁵ to 10⁷ measurements into 3D dataset:

The highest achievable resolution is limited by the ability to group patterns of similar orientation

Gösta Huldt, Abraham Szöke, Janos Hajdu (J.Struct Biol, 2003 02-ERD-047)

Miao, Hodgson, Sayre, PNAS 98 (2001)

PHOTON SCIENCE at STANFORD LINEAR ACCELERATOR CENTER

CXI Peak Data Rate and Volume

For CXI Detector: 1.16 Mpixel & 14 Bit encoding & at 120 Frames/sec				
	Average (in 2009)	Lower Limit	Upper Limit	
Peak Rate (Gigabit/s)	1.95	1.95	1.95	
Success Rate (%)	10%	5%	100%	
Ave. Rate (Gigabit/s)	0.20	.097	1.95	
Daily Duty Cycle (%)	25%	10%	100%	
Accumulation (Terabyte/day)	0.53	0.11	21	
Yearly Uptime (%)	25%	10%	100%	
Accumulation (Petabyte/year)	0.048	0.0038	7.7	

require high performance and high capacity data acquisition and management system

PHOTON SCIENCE at STANFORD LINEAR ACCELERATOR CENTER

Longer Term Trend

For CXI Detector: pixel number x2/3 years				
	Average (in 2009)	2012	2015	
Peak Rate (Gigabit/s)	1.95	3.90	7.80	
Success Rate (%)	10%	30%	50%	
Ave. Rate (Gigabit/s)	0.20	1.17	3.90	
Daily Duty Cycle (%)	25%	50%	75%	
Accumulation (Terabyte/day)	0.53	6.31	31.6	
Yearly Uptime (%)	25%	75%	90%	
Accumulation (Petabyte/year)	0.048	1.73	10.4	

Pixels will go up, machine will be more stable and measurement techniques more refined

PHOTON SCIENCE at STANFORD LINEAR ACCELERATOR CENTER

Summaries

- Algorithm development needed on fundamental issues (50x compute power?).
- Memory/core increase, latency reduction very useful.
- GPU attractive.
- Large data set analysis tied to light scattering facilities.