Environmental Science Case Study: Subsurface Reactive Transport Modeling

Timothy D. Scheibe
Staff Scientist
Pacific Northwest National Laboratory

Large Scale Production Computing Requirements for Biological and Environmental Research

May 7-8, 2009
Rockville, Maryland
BER Mission Needs:

DOE/BER long-term measure for Environmental Remediation:

“Provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation and long-term stewardship.”
Three Critical Science Needs

- **Critical issue #1: Impacts of spatial heterogeneity in the subsurface**
 - Anomalous field-scale transport
 - Discrepancy between field-scale and laboratory parameters
 - Creation and large-scale effects of microenvironments
 - Significantly impacts risk assessment and design of remedial actions → DOE cost and effectiveness

- **Need for high-performance computing:**
 - High spatial resolution to capture effects of multi-scale heterogeneity
Three Critical Science Needs

- Critical issue #2: Coupled processes (multi-phase, multi-domain)
 - Water, air/gas, non-aqueous phase liquids (oils, solvents), supercritical fluids (CO$_2$)
 - Mineral precipitation / biofilm formation → coupling between transport, flow and reaction
 - Highly localized processes

- Need for high-performance computing:
 - High spatial resolution for localized processes
 - Multicomponent chemistry
 - Multiphase fluids (non-linear physics)
 - Multidomain physics

“For both simulations… convergence is not obtained…According to stability analysis the finger width should be on the order of $\lambda_c = 0.05$ m and $\tau_c = [5.4 \, \text{h}]$. This is much too small to resolve even with the fastest computers…”

Three Critical Science Needs

Critical issue #3: Uncertainty Quantification
- Model parameters are poorly known because of lack of characterization data → predictive uncertainty
- Parameter estimation (inverse modeling) is non-unique
- Integrate diverse data types (geophysical, hydrologic, geologic)

Need for high-performance computing:
- Multiple realizations in Monte Carlo stochastic simulation
- Parameter inversion with thousands to millions of parameters

Computational Requirements

<table>
<thead>
<tr>
<th>Science Issue</th>
<th>Problem Size</th>
<th>Computational Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial heterogeneity</td>
<td>10 M grid cells</td>
<td>Terascale</td>
</tr>
<tr>
<td>Coupled processes</td>
<td>x 3 phases x 10 doms x 20 comps = 1 B DOF</td>
<td>Petascale</td>
</tr>
<tr>
<td>Uncertainty quantification / inverse modeling</td>
<td>x 1000 realizations = 1 T DOF</td>
<td>Exascale?</td>
</tr>
</tbody>
</table>
Focus Areas for Computational Research:

- **Pore-Scale Simulation**: Incorporate and understand fundamental biogeochemical processes
 - Multicomponent, multidomain, multiphase

- **Scale Integration**: Use fundamental-scale models to inform larger-scale simulations
 - Upscaling
 - Multiscale Hybrid Modeling

- **Field-Scale Simulation**: Apply high-end computational tools to simulate complex processes at field sites
 - Data integration / parameter estimation
 - High-resolution simulation
 - Uncertainty quantification
Microbiological and geochemical processes are controlled by local (pore) environments.

Pore-scale simulation serves as the foundation for fundamentally-sound models at larger scales.

Grid- and particle-based methods implemented on parallel computers.
3D Parallel Code – Smoothed Particle Hydrodynamics

- SPH is a particle-based (Lagrangean) method first developed for astrophysical applications.
- Our 3D code is built using Common Component Architecture and Global Arrays.
- Simulation shown used seven million computational particles.
- Runs on EMSL “chinook” and NERSC “franklin” supercomputers.

Pore-Scale Simulation - CFD

- 3D Parallel Code – Computational Fluid Dynamics
 - Geometry modeling and mesh generation for arbitrary pore geometry
 - PNNL Code – TE2THYS, runs on Altix cluster, Chinook, and Franklin

Visualization by John Serkowski, PNNL
Relating Pore- and Continuum-Scale Models

- Obvious problem: It is impractical to simulate engineering problems of interest with pore-scale resolution

\[D = 10 \text{ mm} \]
\[L = 15 \text{ mm} \]
Upscaling

- Use detailed (pore-scale) information to define continuum-scale models (equations) and parameters
- Example: Dispersion

Other upscaled processes/parameters: diffusive mass transfer, biofilm dynamics, mixing-controlled reactions, surface sorption
Continuum-Scale Simulation - STOMP

- 3D Parallel Code – Subsurface Transport Over Multiple Phases (STOMP)
 - Current version used for Hanford Site applications has limited scalability
 - Code is being redesigned for
 - enhanced flexibility
 - modularity using CCA
 - alternative grid components using ITAPS
 - scalability
 - Global Arrays
 - TOPS solvers

Continuum-Scale Simulation

- **3D Parallel Code – PFLOTRAN**
 - Development under SciDAC Science Application (Peter Lichtner, LANL, PI)
 - Based on PETSc framework (solvers and data structures); provides links to other software packages.
 - Relative parallel efficiency of 79% at 12,000 cores (strong-scaling study of 500 million nodes – ORNL Jaguar).
 - Proof-of-principle run on a one billion node (4096×2048×128 = 1,073,741,824 nodes) problem. Timings for a single step run on 1024 to 4096 cores are shown.

![PFLOTRAN strong scaling graph](image)
Hybrid Multiscale

Couples pore-scale and continuum-scale models in a single simulation

Field-Scale Applications

- CO2 Sequestration
- Fate, transport, and remediation of metals and radionuclides
- Large-scale heterogeneity modeling
- Data and scientific workflow management

Figure Courtesy of the Australian CO2CRC
1. Projects Overview

- Hybrid Multiscale Modeling (SciDAC)
 - PIs: Tim Scheibe, Bruce Palmer, Karen Schuchardt (PNNL); Daniel Tartakovsky (UCSD); Paul Meakin, George Redden (INL); Scott Brooks (ORNL)
 - FY 2007-2010
 - Couple pore- and continuum-scale models of porous media flow and reactive transport

- PFlotran (SciDAC)
 - PIs: Peter Lichtner (LANL); Glenn Hammond (PNNL); Al Valocchi (UIUC); Richard Mills (ORNL)
 - FY 2007-2011
 - Develop highly-scalable continuum-scale model of porous media flow and reactive transport

- PNNL Science Focus Area / Hanford Integrated Field Research Challenge (ERSP)
 - Integrate molecular to field scale information to predict uranium transport at the Hanford Site 300 Area
2. Current HPC Requirements
(see slide notes)

▶ Architectures
- Cray XT4 (NERSC)
- HP Opteron cluster with Infiniband Network (EMSL)

▶ Compute/memory load
- Memory load is not tracked but is not severe
- 300K processor hours at EMSL, 750 processor hours at NERSC

▶ Data read/written
- 1 – 10 GByte per snapshot

▶ Necessary software, services or infrastructure
- Petsc and other solver libraries
- High performance parallel IO libraries
- Data archive
- Common Component Architecture (CCA)
- Global Arrays
- Support for shared libraries (CCA)

▶ Current primary codes and their methods or algorithms
- Smoothed particle hydrodynamics (SPH): Lagrangian algorithm, explicit timestepping
- TE²THYS: Finite Volume, particle tracking
- STOMP, PFLOTRAN: Eulerian algorithms, non-linear implicit solution schemes (phase switching)

▶ Known limitations/obstacles/bottlenecks
- Non-scaling solvers (anything less than order N or maybe NlnN is going to kill us)
- Low performing parallel IO libraries. Performance is substantially less than theoretical peak, even for relatively ideal cases (large contiguous writes)
3. HPC Usage and Methods for the Next 3-5 Years

(see slide notes)

- Upcoming changes to codes/methods/approaches
 - SPH: running larger problems with concurrent increase in IO and data storage
 - Darcy scale continuum: Not clear, currently under investigation

- Changes to Compute/memory load
 - Expected to reach 10 million processor hours

- Changes to Data read/written
 - Move up to 100-1000 GBytes per snapshot

- Changes to necessary software, services or infrastructure
 - Archive needs to be incorporated into job execution services (e.g. write data to disk and then move it to archive before job execution completes) to eliminate possible flooding of disk
 - Visualization and other analysis tools need to execute in parallel to support very large data sets

- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 - No programming models
 - Unable to identify sufficient parallelism
 - Excessive synchronization (?)
4. Summary

What new science results might be afforded by improvements in NERSC computing hardware, software and services?

- Detailed simulations of pore scale flow that can be used as the basis for developing more sophisticated upscaling approaches for coarser simulations
- High resolution, multicomponent, multiphysics simulations of groundwater sites extending over extensive time periods (100s-1000s years) for analyzing contaminated DOE sites

Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science

- Resources dedicated to software (libraries) and operating systems must be commensurate with resources dedicated to hardware
- High performance parallel IO libraries (capable of delivering a significant fraction of theoretical bandwidth for large contiguous writes)
- Programming models for multicore architectures
- Profiling tools that support detailed examination of the behavior of code segments and can organize results in human-understandable form. It will probably become increasingly necessary to do debugging and profiling on very large processor counts
For More Information...

Tim Scheibe – Pacific Northwest National Laboratory
- Tim.scheibe@pnl.gov
- 509-372-6065

Websites:
- http://subsurface.pnl.gov/
- http://software.lanl.gov/pflotran/
- http://ifchanford.pnl.gov/