>

«.~1n BERKELEY LAB) ENERG)
rrreeer & AR
) {2} ENERGY
1 LAWRENCE BERKELEY NATIONAL LABORATORY

Computer Science &
Performance Evaluation

Erich Strohmaier,

Lawrence Berkeley National Laboratory

Large Scale Computing and Storage Requirements for
Advanced Scientific Computing Research
ASCR / NERSC Workshop

January 5-6, 2011

Some Current Projects ’\| \

« UPC, CAF and Titanium
—And hybrids of these with others (MPI)

* Performance Characterization and Benchmarking of HPC Systems
(Apex-MAP)

— Synthetic parameterized performance probes

* The Performance Engineering Research Institute (PERI)
—Application centric performance engineering

* Developing and optimizing new algorithms
—Cache - Math/CS Institute

 (Evaluation of) of new and of hybrid programming models

« Various other benchmarking, auto-tuning, and application
optimization studies

c

The Accidental Benchmarker

« Appendix B of the Linpack Users’ Guide , I
= Designed to help users extrapolate execution l"""

for Linpack software package "IN[B/AICIK;
 First benchmark report from 1977; 1 P[ALR

= Cray 1 to DEC PDP-10 AAGK

"LV-L UNIT = 10%%6 TIME/(1/3 100%%3 + 100%%2) “
pe ¥ sy ! ors \
_ﬂ/://'?'::* J LIME | UNIT
> Facility /1 =100 micro- Computer Type Compiler 9
’ gecs. Eecs. ..l.. .
KCAR 142 049 0.14 CRAY-1 § CFT, Assembly BLAS T
LASL 4 4Y 148 0.43 CDC 7600 S FIN., Assembly BLAS “JR.Bunch _ GW. Stewart
NCAR 3.5%.192 0.56 CRAY-1 S CFT
LASL 3,27 .210 0.61 cne 7600 S FTN
Argunne 2.3) 297 0.86 IBM 3707195 D H
WCAR 4a1 3% 1.05 CDC 7600 S Lacal
Argonne A¥17 .388 . 1.33 . IBM 3033 D H
NASA Langley = \:52 489 1.11:2 CDC Cyber 175 S FIN
U. TI11. Urbana \/%& ,506 1.47 CDC Cyber 175 S Ext. 4.6 :
LLL 124554 1.61 CDC 7600 S CHAT, No optimize Dense matrices
SLAC 119 .579 1.69 IBM 370/168 D H Ext., Fast mult. :
Michigan 1©9.631 1.84 Amdahl 470/V6 D H Linear systems
Toronto « 773 890 2.59 IBM 370/165 D 1 Ext., Fast mult.
Northwestern 4771.44 4.20 CDC 6600 S FTN Least ISquafl'eS problems
Texas +35¢1.93 5.63 CDC 6600 S RUN i
China Lake »#521.95% 5.69 Univac 1110 S Smgu ar vaiues
Yale 252,59 7,53 TDEC KL-20 TS ¥20
Bell Labs 497 3.46 10.1 Honeywell 6080 S Y
Wisconsin AF73.49 10.1 . Univae 1110 S v
Iowa State J%93.54 _10.2 Itel AS/5 mod3I ™D H
U. I11. Chicago #%4.10 11.9---IBM 370/158 b Gl
Purdue #H 5.69 16.6 CDC 6500 S FUN
U, C. San Diego: 26243,1 38.2 Burroughs 6700 S H
Yale- (Wnl7.1% 49.9 DEC RA-10 S F40

* TIME(LCO) = (1CO/75)#*3 SGEFA(75) + (100/75)**2 SGESL(75) From- J J Dongarra

< HPCS Performance Targets

. HPL: linear system solve (Memory Hierarchy) Max Relative
Ax=Db
\ Registers / 2 Pflop/s 8X
. STREAM: vector operations Operands | Instructions 6.5 Pbyte/s 40x

Lines | Blocks
Z = fft(X)

\ Local Memory I
. RandomAccess: integer update

I Message

[Performance Targets

A=B+s*C
° \ Cache(s) 0.5 Pflop/s 200x
. FFT: 1D Fast Fourier Transform / 64000 GUPS 2000x

—

T[i] = XOR(T[i], rand—
[HPC ChaIIenge]

Remote Memory

I Pages
Disk |
I
Tape |

. HPCC was developed by HPCS to assist in testing new HEC systems
. Each benchmark focuses on a different part of the memory hierarchy
. HPCS performance targets attempt to

m Flatten the memory hierarchy

= Improve real application performance 4

Make programming easier

J.J. Dongarra

C RD APEX-Map: Locality Concepts]

 Data set size: M

« Spatial Locality (L):
— Blocked access to L contiguous data elements.
— L is also the innermost loop length!

 Temporal Locality (o):

— Achieve more frequent access to certain memory
locations by using non-uniform random starting
addresses of blocks distributed according to a
power law.

— Characterize temporal locality with the exponent o of
the power law (a in [0,1]).

ot M1 0 famer e M1

Parallel Performance Surfaces
256 Processors - MPI

Cheetah — IBM SP Power4 Phoenix — Cray X1

freeeee ||/|1

[04.00-5.00
W 3.00-4.00
[12.00-3.00
[11.00-2.00
[0.00-1.00
[-1.00-0.00

CRD Performance Model]

* Linear timing for two levels
— T = [P(c/m)*(a+b*(L-1)) + (1-P(c/m))*(c+d*(L-1)) J/L

 P(c/m): Local access probability
« a=local latency;
* b=local gap;
* c=remote latency;
* d=remote gap;
« Characterize systems with 5 parameters!

 Use performance models to eliminate the
‘expected’ performance behavior of APEX-Map:

CRD Residual Error - Parallel

Residual Error - BG/L

TORCH: Computational Reference Kernels

o 5 . 2

< < 2 5 2 2

— = =) o}

5 9 2 8§ 5 g 9 % g 2 X = ¥

s 2 £ z £ 3 2 £ 2 8 E ¥

5 £ 2 2 8 £ £ F :|€ % & 3 %
Kernel A »n »n P2 n oA = O wulA 2 O wn >
Scalar-Vector Mult. v v v
Elementwise-Vector Mult. v v v
Matrix-Vector Mult. v v v
Matrix-Matrix Mult. v v v
LU Factorization v v v v v
Symmetric Eigensolver (QR) v oV v oV
Cholesky Factorization v v
SpMV (y=Ax) v o v v v v
SpTS (Lx=b) v v v v
Matrix Powers (y;=AFx) v v v oV
Solve PDE via CG v v v v
Solve PDE via KSM/GMRES v v v v
Solve PDE via SpLU
Finite Difference Derivatives v v v v
FD/Laplacian v v v v v
FD/Gradient v v oV v v
FD/Divergence v v v v v
FD/Curl v v v oV
Solve FD/PDE (explicit) v v v v
Solve FD/PDE via CG v ov v oo v

vvvvv Solve FD/PDEVlaMu]Ung B Ay SR AV A

There are a number of other important structured grid methods including lattice
Boltzmann, finite volume, and AMR, that we have yet to enumerate representa-
tive kernels for.

TORCH: Computational Reference Kernels

ob ob b
< < 3 3 % 2
5 I O 3 e £ .
s & 3 B S s = 8 3T = S
NS 5 S = s 9 2 g 2 N &L 7
: 2 5 : 2 3z 4 _|EEE% g
5 = =z 2 2 E & £ 2|3 § E % 3
Kernel A »n » P »v A =2 0O wvu|A & O «n >
Although even within our community unstructured grids are commonly used, we
have yet to enumerate any concise representative kernels.
1D FFT (complex—complex) v oV v oV
3D FFT (complex—complex) v oV v oV
Convolution v v v oV
Solve PDE via FFT [] v v
2D N” Direct v v v
3D N? Direct v oV v
2D N? Direct (with cut-off) v v v v
3D N2 Direct (with cut-off) v v v v
2D Particle-in-Cell (PIC)
3D Particle-in-Cell (PIC)
2D Barnes Hut v oV v Vv
3D Barnes Hut v oV v Vv
2D Fast Multipole Method
3D Fast Multipole Method v v
Quasi-Monte Carlo Integration v oV v Vv
Breadth-First Search v oV v Vv
Betweenness centrality v oV v oV
Integer Sort VR v oV
vvvvv 100 Byte Sort e
Spatial Sort v oV v oV

u
Example Heat Equationi gs
ample Spectral Linear
e T R L
] Structured A/

Grids

Create
Sparse
Matrix

Solve
(explicit)
w/stencils

Sampled Analytic Solution

Problem:

Solve

Heat Eqn. \

Sample
Initial
Conditions

Solve
(iterative)
w/stencils

Permute
(scramble)
Enumeration
and Add Zeros

Solve
Problem

Analytically

Solve
(multigrid)
w/stencils

Solve
(explicit)
w/SpMV’s

Analytic Solutions

Numeric Solutions

A

< Solve
(iterative)
w/SpMV’s

A

14
A

~

Past and Current Use

A
frrererrer 1]

EEEEEEEEEEE ‘

* A typical study with a few large scale application runs
takes between 100k to several M CPU core-hours (spread
over multiple systems)

 Language and communication software developed on
small to medium systems with occasional large scale
tests (several 100k core-hours)

« Auto-tuning focuses on node-level issues
—diversity and ease of access more important than time

* Disk required for some trace-files
—Not often on large scale runs (too long, too big)

~

What is Changing?

A
reeocoeer| |

EEEEEEEEEEE ‘

* Increasing diversity of architectures and programming
models

—No single, unified targets for studies on the horizon

—Explorative evaluation studies need to consider lot
more ‘cases’ (Kernels, codes, implementations,
architectures)

* Increasing complexity of single architectures
—Evaluation requires parameter sweeps with probes

—Optimization requires auto-tuning, which becomes a
search problem in large spaces

~

What is Changing?

A
reeocoeer| |

BERKELEY LAB

* 10% performance in 3 years drives concurrency levels
—Plus any changes driven by architectures

» Concurrency level will grow more rapid than in the past

—Scalability questions more pressing as we go
forward

—More large scale experiments needed

* More research groups will hit problems
—More performance studies and work overall
* Drive to Exascale will increase need for large scale

performance studies, simulation, co-design, and
development in general

~

Coming Changes

A
reeocoeer| |

EEEEEEEEEEE ‘

* More focus on large scale scalability, multiple
implementations, and larger variety of architectures will
increase demand for CPU core-hours for most(!)
studies.

 Language and communication software development
needs to focus on large scale issues

* The search space for auto-tuning on the node-level
increases and more studies will look at interaction of
larges scale MPI with local xyz optimizations.

* CoDesign will place new demands

* Disk and I/O requirements could easily explode if large
scale tracing, debugging, and simulation are necessary

