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Some Current Projects 

• UPC, CAF and Titanium  
– And hybrids of these with others (MPI) 

•  Performance Characterization and Benchmarking of HPC Systems 
(Apex-MAP) 

–  Synthetic parameterized performance probes 
•  The Performance Engineering Research Institute (PERI) 

– Application centric performance engineering 
• Developing and optimizing new algorithms  

– Cache - Math/CS Institute 
•  (Evaluation of) of new and of hybrid programming models 
•  Various other benchmarking, auto-tuning, and application 

optimization studies 



•  Appendix B of the Linpack Users’ Guide 
  Designed to help users extrapolate execution                                time 

for Linpack software package 

•  First benchmark report from 1977;  
  Cray 1 to DEC PDP-10                                  

Dense matrices 
Linear systems 
Least squares problems 
Singular values 

From: J.J. Dongarra 
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●  HPCC was developed by HPCS to assist in testing new HEC systems 
●  Each benchmark focuses on a different part of the memory hierarchy 
●  HPCS performance targets attempt to 
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HPC Challenge 

Performance Targets 

●  HPL: linear system solve 
  Ax = b 

●  STREAM: vector operations 
  A = B + s * C 

●  FFT: 1D Fast Fourier Transform 
  Z = fft(X) 

●  RandomAccess: integer update 
  T[i] = XOR( T[i], rand) 

Cache(s) 

Local Memory 

Registers 

Remote Memory 

Disk 

Tape 

Instructions 

Memory Hierarchy 

Operands 

Lines Blocks 

Messages 

Pages 

J.J. Dongarra 



APEX-Map: Locality Concepts 

•  Data set size: M 
•  Spatial Locality (L): 

–  Blocked access to L contiguous data elements. 
–  L is also the innermost loop length! 

•  Temporal Locality (α): 
–  Achieve more frequent access to certain memory 

locations by using non-uniform random starting 
addresses of blocks distributed according to a 
power law. 

–  Characterize temporal locality with the exponent α of 
the power law (α in [0,1]). 

M-1 
L L 

0 M-1 
L L 

0 
L 



Parallel Performance Surfaces 
256 Processors - MPI 

Cheetah – IBM SP Power4	

 Phoenix – Cray X1	





Performance Model 

•  Linear timing for two levels 
–  T = [P(c/m)*(a+b*(L-1)) + (1-P(c/m))*(c+d*(L-1)) ]/L 

•  P(c/m): Local access probability 
•  a= local latency;  
•  b= local gap;  
•  c= remote latency; 
•  d= remote gap; 

•  Characterize systems with 5 parameters! 
•  Use performance models to eliminate the 

‘expected’ performance behavior of APEX-Map: 



Residual Error - Parallel 



TABLE 1. Brief overview of enumerated kernels with their mapping to dwarfs. Check marks denote
progress we’ve made towards a practical testbed for scientific computing. Note, orange boxes denote
the mapping of supporting kernels to dwarfs.
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Scalar-Vector Mult. � � �
Elementwise-Vector Mult. � � �
Matrix-Vector Mult. � � �
Matrix-Matrix Mult. � � �
LU Factorization � � � � �
Symmetric Eigensolver (QR) � � � �
Cholesky Factorization � �
SpMV (y=Ax) � � � � �
SpTS (Lx=b) � � � �
Matrix Powers (yk=Akx) � � � �
Solve PDE via CG � � � �
Solve PDE via KSM/GMRES � � � �
Solve PDE via SpLU
Finite Difference Derivatives � � � �
FD/Laplacian � � � � �
FD/Gradient � � � � �
FD/Divergence � � � � �
FD/Curl � � � �
Solve FD/PDE (explicit) � � � �
Solve FD/PDE via CG � � � �
Solve FD/PDE via Multigrid � � � �
There are a number of other important structured grid methods including lattice

Boltzmann, finite volume, and AMR, that we have yet to enumerate representa-

tive kernels for.

Although even within our community unstructured grids are commonly used, we

have yet to enumerate any concise representative kernels.

1D FFT (complex→complex) � � � �
3D FFT (complex→complex) � � � �
Convolution � � � �
Solve PDE via FFT � � � �
2D N2 Direct � � �
3D N2 Direct � � �
2D N2 Direct (with cut-off) � � � �
3D N2 Direct (with cut-off) � � � �
2D Particle-in-Cell (PIC)
3D Particle-in-Cell (PIC)
2D Barnes Hut � � � �
3D Barnes Hut � � � �
2D Fast Multipole Method
3D Fast Multipole Method � �
Quasi-Monte Carlo Integration � � � �
Breadth-First Search � � � �
Betweenness centrality � � � �
Integer Sort � � � �
100 Byte Sort � � � �
Spatial Sort � � � �
Our kernel selection predominantly reflects scientific computing applications.

There are numerous other application domains within computing whose re-

searchers should enumerate their own representative problems. Some of the

problems from other domains may be categorized using the aforementioned

motifs, some may be categorized into other Berkeley Motifs not listed above

(such as branch-and-bound, dynamic programming), while others may necessi-

tate novel motif creation.

TORCH: Computational Reference Kernels 
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Example Heat Equation 
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Past and Current Use 

• A typical study with a few large scale application runs 
takes between 100k to several M CPU core-hours (spread 
over multiple systems) 

• Language and communication software developed on 
small to medium systems with occasional large scale 
tests (several 100k core-hours) 

• Auto-tuning focuses on node-level issues  
– diversity and ease of access more important than time 

• Disk required for some trace-files  
– Not often on large scale runs (too long, too big) 



What is Changing? 

•  Increasing diversity of architectures and programming 
models 

– No single, unified targets for studies on the horizon 
– Explorative evaluation studies need to consider lot 
more ‘cases’ (Kernels, codes, implementations, 
architectures) 

•  Increasing complexity of single architectures 
– Evaluation requires parameter sweeps with probes 
– Optimization requires auto-tuning, which becomes a 
search problem in large spaces 



What is Changing? 

• 10× performance in 3 years drives concurrency levels 
– Plus any changes driven by architectures 

• Concurrency level will grow more rapid than in the past 
– Scalability questions more pressing as we go 
forward 

– More large scale experiments needed 
• More research groups will hit problems 

– More performance studies and work overall 
• Drive to Exascale will increase need for large scale 

performance studies, simulation, co-design, and 
development in general 



Coming Changes 

• More focus on large scale scalability, multiple 
implementations, and larger variety of architectures will 
increase demand for CPU core-hours for most(!) 
studies. 

• Language and communication software development 
needs to focus on large scale issues 

• The search space for auto-tuning on the node-level 
increases and more studies will look at interaction of 
larges scale MPI with local xyz optimizations. 

• CoDesign will place new demands 
• Disk and I/O requirements could easily explode if large 

scale tracing, debugging, and simulation are necessary 


