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Visual Data Analysis? 

  Visualization: transformation of data into images. 
  Visual data analysis: 

•  Reflects one of three different visualization use models: 
•  Exploratory, analytical, presentation. 



www.vacet.
org 
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Berkeley Lab Visualization Group Mission 

  Enable scientific knowledge discovery through the research, 
development, deployment, and application of visual data 
analysis technologies in the modern regime of HPC and data 
intensive science. 

  We accomplish this mission by: 
•  Focusing R, D, & D efforts at all stages of the visualization 

pipeline. 
•  Close collaborations with science stakeholders to maximize 

likelihood of science impact. 
•  Tightly integrated and well coordinated interaction between 

research, development, and production deployment 
activities.  



Projects Represented Today 

  (ASCR) SciDAC Visualization and Analytics Center for 
Enabling Technology (Research, development, 
deployment) 
•  SciDAC-e: two additional projects – computational analysis 

infrastructure for carbon sequestration. 

  (ASCR) LBNL Visualization Base Program (research) 
  (ASCR) High performance parallel I/O (R&D) 
  (BER) Visual data analysis of ultra-large climate data 
  (EM) Advanced Simulation Capability for Environmental 

Management 
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Visual Data Analysis Programs: What do we do? 

  Basic research: 
•  What are issues in doing visual analysis to the XX-scale? 
•  How to solve impedance mismatch between Moore’s Law growth 

in data size/complexity and (1) slowly growing I/O infrastructure 
and (2) “limited” human cognitive pathway? 

  Applied research: 
•  Enabling insight: finding needles in haystacks, new forms of 

analysis algorithms 

  Development 
•  Production-quality, petascale capable visual analysis software 

infrastructure. 

  Deployment and application 
•  Make s/w work reliably on large machines 
•  Solve specific user problems in visual data analysis. 
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Role of SC Facilities for Visual Analysis Research 

  Support basic and applied research 
•  Provide access to emerging platforms for algorithmic R&D: 

big, parallel machines; distributed-memory GPU clusters 
•  Testbeds and experimental facilities 

  Provide infrastructure for conducting applied work 
•  Apply software tools to specific user problems to produce 

scientific insight 

  Vehicle for deploying research & development 
products to the scientific community. 
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Two Case Studies 

  Hybrid-parallelism, extreme concurrency visualization 
on large, distributed-memory systems. 
•  Lots of work on computational/computer science studying 

hybrid parallelism, but mostly for solver-type code. 
•  Our work: explore this space from a visual data exploration 

and analysis perspective. 

  Bucket of other ideas 
•  Diversity of projects begets diversity of requirements. 
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Hybrid-parallelism: proof at the petascale holds 
promise for the exascale. 

  Existing programming models may not 
work well at the exascale: multi- and 
many-core processors. 

  Early studies show promise: hybrid-
parallel approach outperforms MPI-
based approaches on largest-ever 
visualization runs on DOE 
supercomputers. 

  These results suggest hybrid-
parallelism likely a good approach for 
exascale class machines. 

Hybrid-parallel volume 
rendering of 64-billion zones 
from combustion simulation 

on 216,000 cores of JaguarPF 
at ORNL.	
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Volume Rendering (serial) 

  Overview of Levoy’s method 
•  For each pixel in image plane: 

•  Find intersection of ray and volume 
•  Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color 

Unstructured!	
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Parallelizing Volume Rendering 

  Image-space decomposition. 
•  Each process works on a disjoint subset of the final image (in 

parallel) 
•  Processes may access source voxels more than once, will access 

a given output pixel only once. 
•  Great for shared memory parallelism. 

  Object-space decomposition. 
•  Each process works on a disjoint subset of the input data (in 

parallel). 
•  Processes may access output pixels more than once.  
•  Output requires image composition (ordering semantics). 
•  Typical approach for distributed memory parallelism. 
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Hybrid Parallel Volume Rendering 

  Our hybrid-parallel architecture: 

Shared memory parallel	



Distributed-memory parallel	
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Our Experiment 

  Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach. 

  How/what to measure? 
•  Memory footprint, communication traffic load, scalability 

characteristics, absolute runtime. 
•  Across a wide range of concurrencies. 

•  Remember: we’re concerned about what happens at extreme 
concurrency. 

•  Algorithm performance somewhat dependent upon viewpoint, data: 
•  Vary viewpoints over a set that cut through data in different 

directions: will induce different memory access patterns. 
  Strong scaling study: hold problem size constant, vary 

amount of resources. 
  Weak scaling study: increasing problem size with 

increasing concurrency. 
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Experiment: Platform and Source Data 

  Platform: JaguarPF, a Cray XT5 system at ORNL 
•  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores) 

  Source data: 
•  Combustion simulation results, hydrogen flame (data courtesy J. 

Bell, CCSE, LBNL) 
•  Effective AMR resolution: 10243, flattened to 5123, runtime 

upscaled to 46083 (to avoid I/O costs). 
•  91B cells, ~3TB total memory footprint. 

  Target image size: 46082 image.  
•  Want approx 1:1 voxels to pixels. 

  Strong scaling study: 
•  As we increase the number of procs/cores, each proc/core works 

on a smaller-sized problem. 
•  Time-to-solution should drop.  
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Experiment: The Unit Test 

  Raycasting time: view/data dependent 
•  Execute from 10 different prescribed views: forces 

with- and cross-grained memory access patterns. 
•  Execute 10 times, result is average of all. 

  Compositing 
•  Five different ratios of compositing PEs to rendering 

PEs. 

  Measure: 
•  Memory footprint right after initialization. 
•  Memory footprint for data blocks and halo exchange. 
•  Absolute runtime and scalability of raycasting and 

compositing. 
•  Communication load between RC and compositing. 
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Memory Use – MPI_Init() 

  Per PE memory: 
•  About the same at 1728, over 2x at 216000. 

  Aggregate memory use: 
•  About 6x at 1728, about 12x at 216000. 
•  At 216000, -only requires 2GB of memory for initialization per 

node!!! 
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Memory Use – Ghost Zones  

  Two layers of ghost cells required for this problem: 
•  One for trilinear interpolation during ray integration loop. 
•  Another for computing a gradient field (central differences) for 

shading. 

  Hybrid approach uses fewer, but larger data blocks. 
•  ~40% less memory required for ghost zones (smaller surface area) 
•  Reduced communication costs 
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Absolute Runtime 

  -hybrid outperforms –only at every concurrency level.  
•  At 216K-way parallel, -hybrid is more than twice as fast as –only. 
•  Compositing times begin to dominate: communication costs. 
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Summary of Results 

  Absolute runtime: -hybrid twice as fast as –only at 216K-way parallel.  
  Memory footprint: -only requires 12x more memory for MPI 

initialization then –hybrid 
•  Factor of 6x due to 6x more MPI PEs. 
•  Additional factor of 2x at high concurrency, likely a vendor MPI 

implementation (an N2 effect). 
  Communication traffic: 

•  -hybrid performs 40% less communication than -only for ghost zone setup. 
•  -only requires 6x the number of messages for compositing. 

  Image: 46082 image of a ~45003 dataset generated using 216,000 
cores on JaguarPF in ~0.5s (not counting I/O time). 



More recent results 

  Weak scaling study 
•  Up to 23,0003 grids, 23,0002 image size. 
•  ~300TB memory footprint 

  Include many-core platform: GPU 
•  CUDA implementation of “kernel” 
•  256 GPU system ~= 40K cores Cray XT5 
•  Small memory footprint 
•  Hardware performance counters? 

  Results: 
•  Similar to strong scaling study results 
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Resource requirements for this work 

  NERSC 
•  Multiple 32K-way runs on franklin (~500K hours) 
•  Consulting help with making 32K-way parallel MPI jobs work, 

understanding behavior characteristics of interconnect fabric. 
•  Compilers, MPI, libraries (pthreads, OpenMP) 
•  Hardware performance counters. 

  OLCF 
•  Multiple 216K-way parallel runs (~7M hours) 
•  Consulting help with high-concurrency jobs 
•  Notes:  

•  300TB memory footprint, avoided doing 300TB of I/O per run 
by using upsampling. 

•  For “real use” (in postprocessing mode), a BIG, unavoidable 
I/O cost is coming. 
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Case Study #2 – Collection of Projects 
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Analysis of Combustion Simulation Data 

  Problem: Data of increasing size and 
complexity increasingly difficult to 
analyze. 

  Accomplishments:  
•  New approaches based upon 

topological methods offer the means 
to discover relationships, features, 
and characteristics in today’s largest 
datasets. 

  Science Impact:  
•  First-ever quantitative analysis of 

large, time-varying combustion 
simulation data to study influence of 
turbulence on size/shape of 
combustion regions in lean, premixed 
hydrogen flames. 

  PI: John Bell (LBNL), SciDAC Community 
Astrophysics Consortium Partnership, Incite 
Awardee. 



Production Visualization at the Petascale 

  Petascale machines are unique, need visual data 
analysis tools capable of leveraging the entire 
resource to ingest and process today’s largest 
scientific datasets. 

  SciDAC Visualization and Analytics Center for 
Enabling Technologies produces such software, 
proves its effectiveness on all major DOE 
computational platforms, and distributes it at no 
charge to the science community. 

  Investments in software infrastructure pay off by 
producing visualization software that can effectively 
harness the power of today’s largest 
supercomputers for scientific data analysis. 

Visualization of supernova 
simulation results, conducted 

at 32,000-way parallel on 
JaguarPF (ORNL) and 

Franklin (NERSC).	





QDV and Accelerator Modeling 

  Problem: sheer size and complexity of data is a 
barrier to analysis. How to make the problem 
more tractable? 

  Accomplishment:  
•  Algorithms and production-quality s/w 

infrastructure to perform interactive visual 
data analysis (identify, track, analyze beam 
particles) in multi-TB simulation data. 

  Science Impact: 
•  Replace serial process that took hours with 

one that takes seconds. 
•  New capability: rapid data exploration and 

analysis.  
  Collaborators: 

•  PI: C. Geddes (LBNL), part of SciDAC 
COMPASS project, Incite awardee. 

•  SciDAC SDM Center (FastBit) 
•  Tech-X (Accelerator scientists) 



Glimpse of Current Work (partial) 

  Climate data analysis 
•  Increasingly refined simulations produce data too large for 

legacy visual data analysis and exploration software. 

  High Performance I/O 
•  Optimizing production-quality I/O for use on SCs, 

optimizing infrastructure for analysis-friendly metadata ops. 

  Topological Data Analysis 
•  New analysis methodology applied to multiple science 

domains. 

  Carbon Sequestration 
•  Machine learning, computer vision, multivariate analysis, 

geometric analysis, and visualization help provide traction 
on understanding how CO2 interacts with porous storage 
media. 
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Comments on Resources for the Future 

  The “Labrador” effect 
  Little Big Iron and the Tale of the Three Skinny Guys 
  The Value of Services 
  I/O, I/O, I/O 
  Unusual requirements 
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The “Labrador” Effect 

  Visual data analysis research, 
development, deployment will “eat 
everything in sight.” 
•  Different from “the telescope lemma” 
•  Related to “chicken-egg” problem. 

  Postprocessing use model: 
•  Machine used for analysis should be 

commensurate in memory, I/O to the 
machine used to create the data. 

  Concurrent, or in-situ use model: 
•  Do visual data analysis concurrent with the 

simulation. 
•  Good for some use models (single-timestep 

analysis), bad for others (temporal analysis, 
exploratory vis). 28 



Visual Data Analysis Hardware Infrastructure 

  Little Big Iron and the Tale of the Three Skinny Guys 
•  “Little Iron” == platform for doing visual data analysis 

  How big? What architecture? 
•  How big? Memory and I/O capacities commensurate with 

machine used to create data. 
•  What architecture? 

•  Same as SC: similar obsolescence characteristics, not a 
parasitic expense, access to best interconnect fabric, 
reduced redundancy of costs for I/O hardware. 

•  Different from SC: may have better commercial s/w support, 
may provide better support for specialized apps/processing 
modes (e.g., large memory serial jobs). 

•  Testbeds: GPUs, FPGAs, others that are not available “on the 
desktop” 

•  Needs support for our diverse program requirements. 
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Other Services that Would be Helpful 

  Web hosting for project websites (e.g., 
www.vacet.org) 

  User/PI-administrable 
•  Project email lists 
•  CVS/SVN revision control/repositories 
•  Project wiki’s 
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I/O, I/O, I/O 

  I/O is the most costly part of analysis. 
•  Lots of research focusing on concurrent compute

+analysis. 
•  Good for, say, 50% of use cases. 

  I/O capacity needs to grow proportionally with flop 
rate 

  Instrumentation, performance analysis 
infrastructure 
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Unusual Requirements: Deployment 

  (Workflow proxy) 
  Climate data analysis (10-05 project) 

•  Problem: unusual requirements for software deployment, 
execution 

•  Front-end:  
•  UV-CDAT is visual interface to data management, 

analysis software. 
•  Middle-tier: 

•  ESG nodes stage data, prepare it for processing 
•  Back-end: 

•  Heavy-lifting analysis runs on SCs 

  Need ongoing, close help of SC staff to make this 
stuff work for science stakeholders! 
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The End 

33 


