Present and Future Computing needs in Simulation and Analysis of Reacting Flows

John B. Bell

1. Reacting Flow Simulation Overview

- John Bell (PI) / LBNL
- Integrated approach to algorithm development for multiphysics applications
 - Mathematical formulation exploit structure of the problems
 - Discretization match discretization to mathematical properties of the underlying processes
 - Software / solvers evolving development of software framework to enable efficient implementation of applications
 - Prototype applications real world testing of approaches

Application areas

- Combustion
- Subsurface flow
- Astrophysics

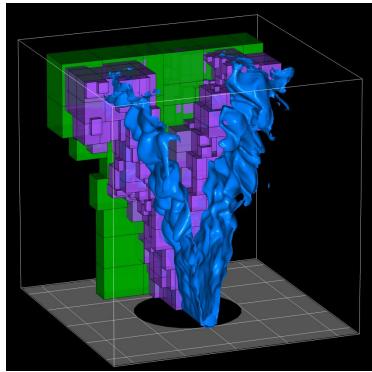
<u>1. Reacting Flow Simulation Overview – cont'd</u>

John Bell (PI) / LBNL

- Combustion
 - Key collaborators: M. Day, M. Lijewski, R. Cheng, P. Glarborg, C. K. Law
 - Resources: NERSC + INCITE (OLCF)
 - Current focus gaseous flames
 - Emissions from low swirl burner
 - Detailed categorization of flame dynamics as a function of turbulent intensity in an idealized configuration
 - High-pressure flames in an idealized configuration
 - Future focus gaseous flames
 - Flame behavior in low swirl burner at high pressure
 - Emissions at high pressure
 - More complex fuels

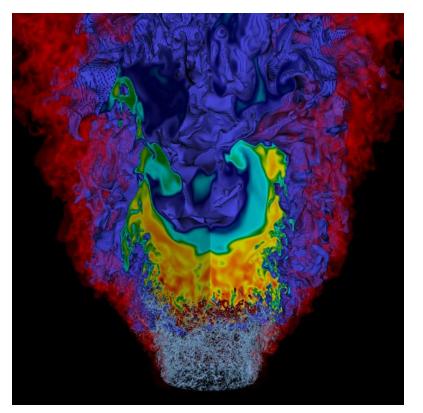
<u>**1. Reacting Flow Simulation Overview – cont'd</u> John Bell (PI) / LBNL</u>**

- Subsurface flow
 - Key collaborators: M. Day, M. Lijewski, K. Pruess, ASCEM
 - Resources: NERSC
 - Current focus incompressible models
 - Simplified model for mixing at CO2 / brine interface
 - Reactive transport in vadose zone
 - Future focus more thermodynamically realistic models
 - Compressible multiphase, multicomponent with mass transfer between phases
 - Non-isothermal effects
 - Multiscale models for heterogeneous subsurface flow


<u>1. Reacting Flow Simulation Overview – cont'd</u>

John Bell (PI) / LBNL

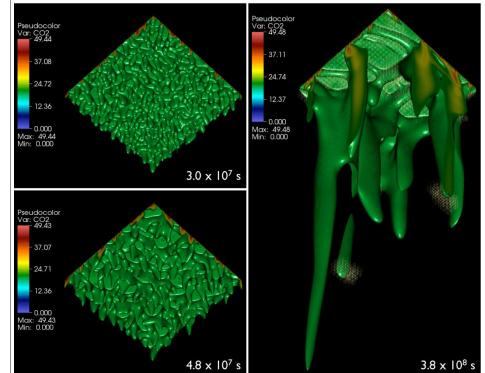
- Astrophysics
 - Key collaborators: A. Almgren, P. Nugent, S. Woosley, M. Zingale, A. Burrows, A. Heger, D. Kasen, J. Neimeyer, W. Schmidt, M. White, ...
 - Resources: NERSC + INCITE (OLCF)
 - Current focus
 - "Standard" SNIa model
 - Convection leading up to ignition
 - Deflagration
 - Detonation
 - Cosmology
 - Dark matter + hydro + self-gravity simulation of Lyman-alpha forest
 - Future focus
 - Alternative SNIa models
 - Merging white dwarfs
 - Sub-Chandra models
 - Cosmology simulation with higher fidelity physics (detailed hydrogen and helium physics), radiation transport and models for structure formation


2. Current HPC Methods -- Overview

- Core algorithm technology
 - Finite volume discretization methods
 - Geometric multigrid
 - Block-structured AMR
- Implemented in BoxLib framework
 - Class structure to support development of structured AMR methods
 - Manages data distribution and load balancing
 - Efficient metadata manipulation
- Hybrid parallelization strategy
 - Distribute patches to nodes using MPI
 - Thread operations on patches using OpenMP

2. Current HPC Methods -- Combustion

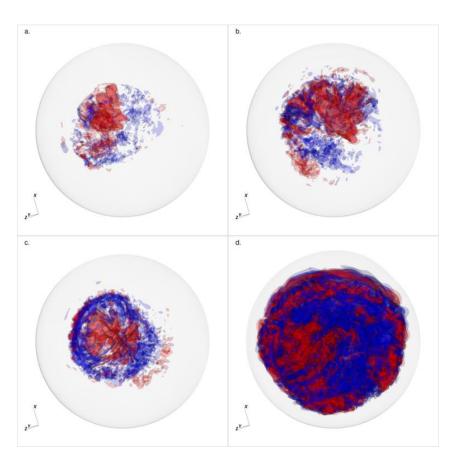
- Formulation
 - Low Mach number model derived from asymptotic analysis
 - Removes acoustic wave propagation
 - Retains compressibility effects due to thermal processes
- Numerics
 - Adaptive projection formulation
 - Operator split treatment of chemistry
 - Dynamic estimation of chemistry work for load balancing



Simulation of NOx emissions in a low swirl burner fueled by hydrogen. Effective resolution is 4096³

• LMC

2. Current HPC Methods – Subsurface Flow


- Fractional step scheme
 - Total velocity formulation
 - Decouple parabolic pressure from essentially hyperbolic component conservation equations
- Numerics
 - Godunov methods for nonlinear hyperbolic component conservation equations
 - Operator split treatment of geochemistry
 - Integrated into AMR framework
- PMAMR

Simulation of mixing-induced by diffusion of CO2 into brine. AMR used to resolve the diffusive length scale

2. Current HPC Methods -- Astrophysics

- Formulation
 - MAESTRO
 - Low Mach number formulation
 - Removes acoustic wave propagation
 - Retains compressibility effects due to stratification and thermal processes
 - CASTRO
 - Compressible flow formulation
 - Self-gravity
 - Models for turbulent flame propagation
 - NYX
 - CASTRO + collision-less particles to represent dark matter
- Numerics
 - Unsplit PPM
 - Multigrid
 - AMR

Simulation of advection leading up to ignition in a Chandrasakar white dwarf

2. Current HPC Requirements

- Architectures currently used
 - Cray XT4, XT5, XE6
 - IBM power 6
 - Linux clusters
- Compute/memory load
 - Current simulations range from 2K 24K cores
 - 1K 10K GB
 - Minimum 0.5 GB / core
- Data read/written
 - 2 60 TB per run written
 - 100 500 GB checkpoint files
- Necessary software, services or infrastructure
 - C++ / F90
 - MPI + OpenMP (working together)
 - Htar
 - Vislt
- Known limitations/obstacles/bottlenecks
 - Hierarchical parallelization model scales to 200K processors
- Hours requested/allocated/used in 2010
 - Total usage during 2010 was approximately 40M hours. 10M at NERSC

3. HPC Usage and Methods for the Next 3-5 Years

- Upcoming changes to codes/methods/approaches
 - Development of higher-order methods
 - Development of *in situ* analysis methodology
- Changes to Compute/memory load
 - Anticipate need for 300M hour / year in 3-5 year (100+ M next yr)
 - 25K 200K cores
 - 10K 100K GB; 0.5 / core; could be reduced
- Changes to Data read/written
 - 10-100 TB
- Changes to necessary software, services or infrastructure
 - Need improved programming model
 - Fine-grained parallelism
 - Low overhead thread support
 - Support to express data locality
 - Support for in situ data analysis
- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 - Current approach should be extensible to 1000K cores
 - Improvements to programming model would help
- Key point is to directly link upcoming NERSC requirements to science goals
 - Limit of memory per core -> 0 hard to define
 - Need to maintain a reasonable level of memory per node (8 GB)

Strategy for New Architectures

- How are you dealing with, or planning to deal with, many-core systems that have dozens or hundreds of computational cores per node?
 - Block-structured AMR provides a natural model for hierarchical parallelism
 - MPI to distribute large patches to nodes
 - Thread based-model for fine-grained parallelism within a node
 - Need improved programming models
- How are you dealing with, or planning to deal with, systems that have a traditional processor augmented by some sort of accelerator such as a GPU or FPGA or similar?
 - Preliminary exploration of CUDA and OPENCL
 - Current programming model seems somewhat limited for our type of application
 - Expectation (hope) is that architecture will move toward heterogeneous models with "first-class" cores

<u>4. Summary</u>

- What new science results might be afforded by improvements in NERSC computing hardware, software and services?
 - Answered above
- Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science
 - Maintain system balance as much as possible
 - Keep (at least) memory per node fairly large
 - Aggressively pursue new programming models to facilitate intranode, fine-grained parallelization
 - Aggressively pursue programming model support for in situ analysis
- NERSC generally acquires systems with roughly 10X performance every three years. What significant scientific progress could you achieve over the next 3 years with access to 50X NERSC resources?
 - Major opportunity to integrate UQ with high-fidelity simulations
 - Combustion
 - High pressure flames for complex fuels
 - Develop models for engineering design
 - Assess role of uncertainty in rate data on fidelity of simulations; use experimental data to improve knowledge of rates
 - Subsurface flow
 - Quantify role of subsurface uncertainty of prediction of contaminant plumes and carbon sequestration scenarios
 - Astrophysics
 - High-fidelity simulation of a variety of supernova phenomena and comparison with observation
 - Detailed cosmological simulations compared to observation to reduce uncertainty in key cosmological parameters