
Shane Canon
GPUs for Science Days
Data & Analytics Group, NERSC

Containers in HPC

July 3, 2019

Contents

• What are containers and why should I use them?

• Basic Demo

• Containers in HPC with Shifter

• Other HPC Container Runtimes

• Tips and Tricks

• Summary

https://github.com/NERSC/Shifter-Tutorial

(See this repo for tutorials)

- 2 -

https://github.com/NERSC/Shifter-Tutorial

The Struggles

• My software doesn’t build on this system…
• I’m missing dependencies…
• I need version 1.3.2 but this system has version 1.0.2..
• I need to re-run the exact same thing 12 months from

now…
• I want to run this exact same thing somewhere else…
• I want my collaborators to have the same exact

software as me…
• I’ve heard about these Containers, can I just run that?
• Can I run docker on this HPC system?

- 3 -

Solution - Containers

What are Containers?
• Uses a combination of Kernel “cgroups” and

“namespaces” to create isolated environments
• Long history of containers Solaris Zones (2005),

LXC(2008), LMCTFY/Google and then Docker(2013)
• Docker provided a complete tool chain to simplify

using containers from build to run.
• Entire ecosystem has grown around containers

especially around orchestration.

- 4 -

Docker Basic’s

• Build images that
captures applications
requirements.

• Manually commit or
use a recipe file.

• Push an image to
DockerHub, a hosted
registry, or a private
Docker Registry.

• Share Images

• Use Docker Engine to
pull images down and
execute a container
from the image.

- 5 -

Containers and Science

• Productivity
– Pick the OS that works best for your app and use the

system package manager to install dependencies.
• Reusability and Collaboration
– Share images across a project to avoid rebuilds and avoid

mistakes
• Reproducibility
– Everything you need to redo a scientific analysis can be in

the image (apps, libraries, environment setup, scripts)
• Portability
– Can easily run on different resources (of the same

architecture)

- 6 -

Containers in Action - Demo

- 7 -

HPC Container Runtimes

- 8 -

Why Containers at NERSC

• NERSC deploys advanced HPC and data
systems for the broad Office of Science
community

• Approximately 6000 users and 750 projects

• Growing number of users around Analyzing
Experimental and Observational Data, ”Big
Data” Analytics, and Machine Learning

• Shift towards converged systems that
support traditional modeling and
simulation workloads plus new models

- 9 -

Why not just run Docker

• Security: Docker currently uses an all or nothing
security model. Users would effectively have
system privileges

• System Architecture: Docker assumes local disk
• Integration: Docker doesn’t play nice with batch

systems.
• System Requirements: Docker typically requires a

very modern kernel
• Complexity: Running real Docker would add new

layers of complexity

- 10 -

> docker run -it -v /:/mnt --rm busybox

Solution: Shifter

• Design Goals:
– User independence: Require no administrator

assistance to launch an application inside an
image

– Shared resource availability (e.g., file systems and network
interfaces)

– Leverages or integrates with public image repos (i.e.
DockerHub)

– Seamless user experience
– Robust and secure implementation

• Hosted at GitHub:
– https://github.com/nersc/shifter

- 11 -

https://github.com/nersc/shifter

Usage

• Use shifterimg pull to pull images from a registry
– Only do this once or after an update

• Use shifter command to run a container with an
image

- 12 -

> shifterimg pull ubuntu:14.04

> shifter --image=ubuntu:14.04 bash
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 14.04.5 LTS
Release: 14.04
Codename: trusty

Shifter accelerates Python Apps

- 13 -

Shifter and MPI
• In Image

– Add required libraries directly into image.
– Users would have to maintain libraries and rebuild images after

an upgrade.
• Managed Base Image (Golden Images)

– User builds off of a managed image that has required libraries.
– Images are built or provided as part of a system upgrade.
– Constrained OS choices and a rebuild is still required.

• Volume Mounting
– Applications built using ABI compatibility.
– Appropriate libraries are volume mounted at run time.
– No rebuild required, but may not work for all cases.

- 14 -

Running an MPI Job – Building Image

FROM nersc/mpi-ubuntu:14.04

ADD . /app
RUN cd /app && \

mpicc –o hello helloworld.c

- 15 -

> docker build –t scanon/hello .
> docker push scanon/hello

Dockerfile

Running an MPI Job – Submit and run

#!/bin/sh
#SBATCH –-image= scanon/hello
srun –np 10 shifter /app/hello

- 16 -

> sbatch submit.sl

submit.sl

GPU Example

###

Build stage 1

###

#

ARG CUDA_VERSION=10.0

ARG UBUNTU_RELEASE=18.04

FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_RELEASE} as builder

…

COPY ./docker/optimized/requirements.txt /tmp/build/

install tomopy dependencies

RUN conda install -n tomopy -c conda-forge -c jrmadsen --file requirements.txt

RUN source activate tomopy && \

echo ${PWD} && ls -la --color=auto && \

python setup.py install -- -DSKIP_GIT_UPDATE=ON

…

- 17 -

GPU Example - Continued

Build stage #2 -- compress to single layer
FROM scratch
COPY --from=builder / /
ENV HOME /root
….

COPY ./docker/runtime-entrypoint.sh /runtime-entrypoint.sh

- 18 -

How does Shifter differ from Docker?

Most Noticeable
• Image read-only on the Computational Platform
• User runs as the user in the container – not root
• Image modified at container construction time (e.g. additional mounts)
Less Noticeable:
• Shifter only uses mount namespaces, not network or process

namespaces
• Shifter does not use cgroups directly (integrated with the Workload

Manager)
• Shifter uses individual compressed filesystem files to store images, not

the Docker graph (slows down iterative updates)
• Shifter starts some additional services (e.g. sshd in container space)

- 19 -

Other HPC Container Solutions

• Singularity
– Available at many DOE Centers
– Very popular
– Easy Installation
– Runtime similar to Shifter
– Native Image format in addition to Docker
– Commercial company (Sylabs) now developing it

• CharlieCloud
– Very light-weight
– Developed and deployed at LANL
– No special privileges required (so users can install it themselves)
– Separate tools to unpack Docker images

- 20 -

Other Tips and Tricks

- 21 -

Volume Mounts

• Volume Mounts provide a way to map external
paths into container paths.

• This allows paths in the container to be abstracted
so it can be portable across different systems.

• All runtimes support volume mounts but the syntax
may vary.

• Basic syntax is:
–volume <external path>:<container path>

- 22 -

Using Volume Mounts

canon@cori06:~> ls $SCRATCH/myjob
config data.in

canon@cori06:~> shifter --image=ubuntu --volume=$SCRATCH/myjob:/data bash
~$ ls /data/
config data.in

- 23 -

PerNode Write Cache (Shifter)

• PerNodeWrite extends the volume concept to
create temporary writeable space that aren’t
shared across nodes.

• These spaces are ephemeral (removed on exit)
• These are node local and the size can be adjusted
• Performs like a local disk but is more flexible
• Basic syntax is

--volume <external path>:<container path>:perNodeCache=size=XXG

- 24 -

Using Volume Mounts

canon@cori06:~> shifter --image=ubuntu \
--volume=$SCRATCH:/scratch:perNodeCache=size=100G /bin/bash

~$ df -h /scratch/
Filesystem Size Used Avail Use% Mounted on
/dev/loop4 100G 33M 100G 1% /scratch
~$ dd if=/dev/zero bs=1k count=10M of=/scratch/output
10485760+0 records in
10485760+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 22.2795 s, 482 MB/s
~$ ls -lh /scratch/output
-rw-r--r-- 1 canon canon 10G Nov 9 23:38 /scratch/output
~$ exit

canon@cori06:~> shifter --image=ubuntu \
--volume=$SCRATCH:/scratch:perNodeCache=size=100G /bin/bash

~$ ls -l /scratch
total 0

- 25 -

Dockerfile Best Practices

- 26 -

RUN wget http://hostname.com/mycode.tgz
RUN tar xzf mycode.tgz
RUN cd mycode ; make; make install
RUN rm -rf mycode.tgz mycode

RUN wget http://hostname.com/mycode.tgz && \
tar xzf mycode.tgz && \
cd mycode && make && make install && \
rm -rf mycode.tgz mycode

Bad:

Good:

Dockerfile Best Practices

- 27 -

RUN wget http://hostname.com/mycode.tgz ; \
tar xzf mycode.tgz ; \
cd mycode ; make ; make install ; \
rm -rf mycode.tgz mycode

RUN wget http://hostname.com/mycode.tgz && \
tar xzf mycode.tgz && \
cd mycode && make && make install && \
rm -rf mycode.tgz mycode

Bad:

Good:

Dockerfile Best Practices

- 28 -

ADD . /src

RUN apt-get update –y && atp-get install gcc

RUN cd /src && make && make install

RUN apt-get update –y && apt-get install gcc

ADD . /src

RUN cd /src && make && make install

Bad:

Good:

Multi-Stage Builds

• Added in Docker 17.05
• Allows a build to progress through stages
• Files can be copied from a stage to later stages
• Useful for splitting images between build and run-

time to keep image sizes small
• Can be used to make public images that make use

of commercial compilers

- 29 -

Dockerfile – Multistage build

- 30 -

FROM centos:7 as build
RUN yum -y install gcc make
ADD code.c /src/code.c
RUN gcc -o /src/mycode /src/code.c

FROM centos:7
COPY --from=build /src/mycode /usr/bin/mycode

Other Considerations

• Avoid very large images (> ~5 GB)
• Keep data in $SCRATCH and volume mount into the

container if data is large
• Use volume mounts for rapid prototyping and

testing, then add that into the image after code
stabalizes

- 31 -

Use Case Example and
Summary

- 32 -

G
H

z SINGLE DAY MAPS FULL SEASON MAPS

TEMPERATURE POLARIZATION TEMPERATURE POLARIZATION

20
30

40
95

15
0

22
0

27
0

Measuring the Composition of the Universe

• CMB – S4
– Ambitious collection of

telescopes to measure the
remnants of the Big Bang with
unprecedented precision

• Simulated 50,000 instances
of telescope using 600,000
cores on Cori KNL nodes.
• Why Shifter?
– Python wrapped code needs to

start at scale

Courtesy of Ted Kisner
- 33 -

Summary
Containers are great
ü Productivity – Get exactly what you

need for your application
ü Portable – Run the same software on

different resources (assuming
architectural compatibility)

ü Sharable – Collaborators can run the
same code as you with less chance of
problems

ü Reproducible – Run the same image
later

ü Performant – Can actually speed up
applications in some cases

- 34 -

Resources

• Hand on exercises:
https://github.com/NERSC/Shifter-Tutorial (look at
the IDEAS Branch)

• Repo includes previous tutorials and previous
slides.

- 35 -

https://github.com/NERSC/Shifter-Tutorial

Questions…
Shane Canon: scanon at lbl.gov

This work was supported by the Director,
Office of Science, Office of Advanced Scientific
Computing Research of the U.S. Department of
Energy under Contract No.
DE-AC02-05CH11231.

Reference

- 37 -

Shifter Components

• Shifter Image Gateway
– Imports and converts images from

DockerHub and Private Registries

• Shifter Runtime
– Instantiates images securely on compute

resources

• Work Load Manager Integration
– Integrates Shifter with WLM

- 38 -

Singularity Recipe File Example

Bootstrap: docker
From: ubuntu

%help
Example Singularity Image

%files
script.sh /script.sh

%labels
Maintainer I. M. Maintainer
Version v1.0

%environment
FOO=bar
export FOO

%post
apt-get update -y
apt-get install -y curl
echo 'export BAR=blah' >> $SINGULARITY_ENVIRONMENT

%runscript
exec /script.sh

- 39 -

> singularity build myimage.simg Singularity

Singularity

Singularity Execution Examples

- 40 -

$ singularity pull --name myimage.simg \
docker://ubuntu:latest

$ singularity shell myimage.simg
Singularity myimage.simg:~>

$ singularity run myimage.simg
Hello World

$ singularity shell docker://ubuntu:latest
Singularity ubuntu:~>

Charliecloud Execution Examples

- 41 -

laptop$ cd /usr/local/src/charliecloud/examples/serial/hello
laptop$ ch-build -t hello .
Sending build context to Docker daemon 5.632kB
[...]
Successfully built 1136de7d4c0a

laptop$ ch-docker2tar hello /var/tmp 114MiB 0:00:03
[===] 103%
-rw-r----- 1 reidpr reidpr 49M Nov 21 14:05
/var/tmp/hello.tar.gz

hpc$ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp
creating new image /var/tmp/hello
/var/tmp/hello unpacked ok

hpc$ ch-run /var/tmp/hello -- echo "I'm in a container”
I'm in a container

