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Understanding Climate Change

• How will the global weather develop by 2010? 

• will the globe warm up by 1.5 or 2.0 C? 

• will the sea level rise by 1 or 2 feet? 

• How will extreme weather develop by 2100? 

• will there be more hurricanes? 

• will they be more intense?  

• will they make landfall more often? 

• will atmospheric rivers carry more water? 

• can they help mitigate droughts 

• will they cause flooding and heavy precipitation?
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Unique Challenges for Climate Analytics

• interpret as segmentation problem 

• 3 classes - background (BG), tropical cyclones (TC), atmospheric rivers (AR) 

• climate data is complex 

• high imbalance - more than 95% of  
pixels are background 

• high variance - shape of events change 

• many input channels w/  
different properties 

• high resolution required 

• no static background, highly variable  
in space and time 

• Deep Learning has proven successful for these tasks
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Unique Challenges for Deep Learning at Extreme Scale
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• need labeled data (supervised approach): leverage from heuristic-based 
approaches 

• define neural network architecture: good balance between compute and 
model performance, rapid prototyping capabilities essential 

• data management: shuffling/loading/processing/feeding 20 TB dataset to 
keep GPUs busy 

• multi-node synchronization: synchronous reduction of O(50)MB across 27360 
GPUs after each iteration 

• convergence and accuracy at scale 

• hyper parameter tuning (HPO)



Software: TensorFlow and Horovod

• TensorFlow 

• high-productivity deep learning framework in Python with C++-backend, 
developed by Google 

• makes use of optimized cuDNN library for performance sensitive kernels 
(e.g. convolutions) 

• dataflow-style programming and asynchronous graph execution 

• provides features for building I/O input pipeline 

• can be combined with most Python modules to provide good flexibility 

• Horovod 

• distributed-training-enabling framework developed by Uber 

• provides MPI callback functions and convenience wrappers for TensorFlow 

• operates asynchronously with the TensorFlow graph executor, allowing 
overlapping of computation and communication
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Summit
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• leadership class HPC system at OLCF, 
1st on top500 

• 4609 nodes with 2 IBM P9 CPU and 6 
NVIDIA V100 GPU 

• 300 GB/s NVLink connection btw. 3 
GPUs in a group 

• 800 GB available NVMe storage/node 

• dual-rail EDR Infiniband in fat-tree 
topology 

• ~3.45 ExaFlop/s theoretical peak 
performance (FP16)



Deep Learning Model for Extreme Weather Segmentation
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DeepLabv3+, 66 layers,  
43.7M parameters, 14.4 TF/sample
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Data Staging
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• 250 training samples/GPU  
(15 GB), sample w/ replacement 

• each file will be read at most once from FS 

• files shared between nodes via MPI 
(mpi4py) 

• preprocess and feed data to GPU 
asynchronously using tf.data and python 
multiprocess
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Single Node Performance

• GPU execution profiled with CUDA profiler, kernels grouped by category 

• convolution kernels: use latest cuDNN, favor higher computational intensity 

• pay attention to memory layout to reduce transposes and copies 

• tuning input pipeline on CPU to keep off critical path
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DeepLabv3+ FP16 Training

Category
#

Kern

Time

(ms)

Math

(TF)

Mem

(GB)

%

Time

%

Math

%

Mem

Forward
n Convolutions 158 147.9 9.61 27.6 18.1 52.0 20.7

Point-wise 829 52.3 < 0.1 24.3 6.4 51.6

Backward
n Convolutions 195 300.2 19.21 50.5 36.7 51.2 18.7

Point-wise 157 25.6 < 0.1 6.3 3.1 27.3
Optimizer 1219 3.9 < 0.1 1.1 0.5 31.3
Copies / Transposes 708 213.2 - 92.6 26.1 48.3
Allreduce (NCCL) 30 58.7 < 0.1 0.6 7.2 1.1
Type Conversions 201 1.3 - 0.6 0.2 51.3
GPU Idle 14.2 1.7
Total 3497 817.3 28.82 203.6 28.2 27.7



Communication Optimizations
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Scaling DeepLabv3+
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• FP16-model sensitive 
to communication 

• FP16-model BW-bound 
(only 2.5x faster than 
FP32) 

• excellent scaling for 
both precisions on 
Summit when gradient 
lag is used



1.13 ExaFlop/s 
(FP16) peak
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999 PetaFlop/s 
(FP16) sustained

DeepLabv3+, 4560 nodes (27360 GPU)



Concurrency/Precision and Convergence
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~2.1x improvement in time to solution



Segmentation Animation
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• best result for intersection-over-union (IoU) obtained: ∼73% 

• result at large scale (batch-size > 1500): IoU ∼55%



Conclusions

• deep learning and HPC converge, achieving exascale performance 

• compute capabilities at leading HPC facilities can be utilized to tackle difficult 
scientific deep learning problems 

• software enhancements benefit deep learning community as a whole 

• HPO and convergence at scale still an open problem 

• deep learning-powered techniques usher in a new era of precision analytics for 
various science areas
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Paper Link

https://arxiv.org/abs/1810.01993
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https://youtu.be/p45kQklIsd4

TensorFlow Dev Summit 2019 Trailer

https://arxiv.org/abs/1810.01993
https://youtu.be/p45kQklIsd4
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