Deep Learning: A Technical Overview

Mustafa Mustafa NERSC <u>@mustafa240m</u>

GPUs for Science Day July 2019, Berkeley Lab

Deep Learning is powering many recent technologies

ARTIFICIAL INTELLIGENCE

A technique which enables machines to mimic human behaviour

MACHINE LEARNING

Subset of AI technique which use statistical methods to enable machines to improve with experience

DEEP LEARNING

Subset of ML which make the computation of multi-layer neural network feasible

What can Deep Learning do?

Deep Learning is a new programming paradigm, Software 2.0

"It turns out that a large portion of real-world problems have the property that it is significantly easier to collect the data (or more generally, identify a desirable behavior) than to explicitly write the program."

-- Andrew Karpath,

https://medium.com/@karpathy/software-2-0-a64152b37c35

Deep Learning is powered by Deep Neural Networks

Why do Neural Networks finally work now?

1) Data: large curated datasets

2) GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization ... etc.

Long story short:

"A family of **parametric**, **non-linear** and **hierarchical representation learning functions**, which are massively optimized with stochastic gradient descent to **encode domain knowledge**, i.e. domain invariances, stationarity." -- Efstratios Gavves

Deep Forward Neural Networks (DNNs)

The objective of NNs is to approximate a function:

$$y = f^*(x)$$

The NN learns an approximate function y = f(x; W) with parameters W. This approximator is hierarchically composed of simpler functions

$$y = f^n(f^{n-1}(\cdots f^2(f^1(x))\cdots))$$

Deep Forward Neural Networks (DNNs)

The objective of NNs is to approximate a function:

$$y = f^*(x)$$

The NN learns an approximate function y = f(x; W) with parameters W. This approximator is hierarchically composed of simpler functions

$$y = f^{n}(f^{n-1}(\cdots f^{2}(f^{1}(x))\cdots))$$

A common choice for the atomic functions is an affine transformation followed by a non-linearity (an activation function $\varphi(x)$):

$$h_1 = \varphi(W_1 x + b_1)$$
$$h_2 = \varphi(W_2 h_1 + b_2)$$

$$y = f(h_n) \tag{10}$$

Activation functions

Activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Deep Forward Neural Networks (DNNs)

$$h_1 = \varphi(W_1x + b_1)$$
$$h_2 = \varphi(W_2h_1 + b_2)$$
$$\vdots$$
$$y = f(h_n)$$

Deep Forward Neural Networks (DNNs)

$$h_1 = \varphi(W_1x + b_1)$$

$$h_2 = \varphi(W_2h_1 + b_2)$$

$$\vdots$$

$$y = f(h_n)$$

Animation adapted from: voutube.com/watch?v=aircAruvnKk&feature

Cost function & Loss

To optimize the network parameters for the task at hand we build a cost function on the training dataset:

$$J(W) = \mathbb{E}_{x, y \sim \hat{p}_{data}} L(f(x; W), y)$$

Cost function & Loss

To optimize the network parameters for the task at hand we build a cost function on the training dataset:

$$J(W) = \mathbb{E}_{x, y \sim \hat{p}_{data}} L(f(x; W), y)$$

Most NNs are trained using a maximum likelihood (i.e. find the parameters that maximize the probability of the training dataset):

$$J(W) = -\mathbb{E}_{x,y\sim\hat{p}_{data}}\log p_{model}(y|x)$$

Gradient Descent

Gradient descent is the dominant method to optimize networks parameters θ to minimize loss function L(θ).

The update rule is (α is the "learning rate"):

$$W_{i+1} \leftarrow W_i - \alpha \nabla L(W)$$

The gradient is typically averaged over a minibatch of examples in minibatch **stochastic gradient descent.**

Gradient Descent

Gradient descent is the dominant method to optimize networks parameters θ to minimize loss function L(θ).

The update rule is (α is the "learning rate"):

$$W_{i+1} \leftarrow W_i - \alpha \nabla L(W)$$

The gradient is typically averaged over a minibatch of examples in minibatch **stochastic gradient descent.**

Cost function & Loss

Stochastic Gradient Descent variants

Gradient descent can get trapped in the abundant saddle points, ravines and local minimas of neural networks loss functions.

VGG-56 loss landscape: arXiv:1712.09913

Stochastic Gradient Descent variants

Gradient descent can get trapped in the abundant saddle points, ravines and local minimas of neural networks loss functions.

To accelerate the optimization on such functions we use a variety of methods:

- SGD + Momentum
- Nestrov
- AdaGrad
- RMSProp
- ...
- Adam

The generalization of networks trained with adaptive optimizers (e.g. Adam) has been questioned in many recent studies. SGD + Momentum is still used for many state-of-the-art networks (e.g. ResNet variants). For example, <u>arXiv:1711.05101</u>

Convolutional Neural Networks (CNNs)

CNNs implement the convolution operation over input.

Convolutional Neural Networks (CNNs)

CNNs implement the convolution operation over input.

CNNs are translation equivariant by construction.

CNNs achieve: sparse connectivity, parameter sharing and translation equivariance.

@mustafa240m

Sliding convolution kernel with size 3x3 over an input of 7x7.

Let us put it all together: a typical CNN network architecture

A schematic of VGG-16 Deep Convolutional Neural Network (DCNN) architecture trained on ImageNet (2014 ILSVRC winner) AlexNet: the onset of Deep Learning winning streak

mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models vision03.csail.mit.edu/cnn_art/index.html

The Revolution (or revelation) of Depth

Long story short:

"A family of **parametric**, **non-linear** and **hierarchical representation learning functions**, which are massively optimized with stochastic gradient descent to **encode domain knowledge**, i.e. domain invariances, stationarity." -- Efstratios Gavves

Fully connected neural networks

Animation adapted from: youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be

28

Convolutional Neural Networks (CNNs)

Animation adapted from: youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be

29

Modified version of comparison made in CS231n cs231n.stanford.edu/slides/2019/cs231n 2019_lecture06.pdf

	Cores	Clock speed	Memory	Memory bandwidth	Price	Peak perf.
CPU (Intel Core i7-7700k)	4	4.2 GHz	System RAM	~35 GB/s	~\$350	~540 GFLOPs FP32
GPU (Nvidia RTX 2080 Ti)	3584	1.6 GHz	11 GB GDDR6	616 GB/s	~\$1200	~13.4 TFLOPs FP32

- CPU have less but more powerful cores, GPU have many "mini"-cores great for parallel computations of linear algebra/neural networks
- GPU have much higher memory bandwidth, great for shuffling big tensors
- GPU memory is bandwidth optimized while CPU are latency optimized

"If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?" —Seymour Cray

Figure from CS231n cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf

Unfair comparison to unoptimized CPU primitives, optimized primitives are 5-10x faster

N=16 Forward + Backward time (ms)

Figure from CS231n cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf

cuDNN library provides GPU accelerated deep learning primitives

Thank You

Applications of Deep Learning

Autoencoders

Unsupervised diagnostics using autoencoders

Clustering Adversarial Autoencoder

Training the CAAE

Applications of DNNs: Classification and Segmentation

Classification

Classification + Localization

Object Detection

Instance Segmentation

Applications of DNNs: Classification and Segmentation

Climate Segmentation Results

Collaboration between NERSC, NVIDIA, UCB, OLCF Pixel-level classification of extreme weather phenomena 3 classes: atmospheric river, tropical cyclone, background

Climate Segmentation Results

ACM GORDON BELL PRIZE – WINNER SCALABILITY AND TIME TO SOLUTION

"Exascale Deep Learning for Climate Analytics"

Research led by Thorsten Kurth Lawrence Berkeley National Laboratory and NVIDIA

Exascale Deep Learning for Climate Analytics: Thorsten Kurth et al. arXiv:1810.01993 41

Applications of DNNs: Generative Adversarial Networks

Applications of DNNs: Generative Adversarial Networks

Figure 5: 1024×1024 images generated using the CELEBA-HQ dataset. See Appendix F for a larger set of results, and the accompanying video for latent space interpolations.

CosmoGAN: generating high-fidelity cosmology maps

structures as full simulations.

@mustafa240m

GAN

 10^{4}

CaloGAN: Particle Calorimeter Showers

