TomoPy
A CUDA Case Study

Jonathan R. Madsen, PhD

Scientific Computing Center X jrmadsen@| bl .gov

National Energy Research Scientific Computing Center
u.s oeearTmenT OF | Office of Lawrence Berkeley National Laboratory

National Energy Research

ENERGY
G Science July 2, 2019

mailto:jrmadsen@lbl.gov

Tomographic Reconstruction

® Tomographic reconstruction is a
multidimensional inverse problem where
the challenge is to yield an estimate of a
specific system from a finite number of
projections.

® Heavily used technique at light sources
for structural imaging of materials
samples and biological specimens at
high-resolution.

® A series of rays such as B are passed
through a sample and py(r1) is recorded
back side (projection)

® In general, a reconstruction starts with
an array of projection angles and the
array of projection values at each
projection angle and
simulates the imaging in reverse.

Office of

@EnNERsY <o NERSC GPU for Science D. J. R. Madsen (NERSC-LBL)

Tomographic Reconstruction Projection

b

0]0/0|0(3]|5[2|4|5(6|3|0({0]0|0

@enErsy NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019

Reconstruction Algorithm Overview

Listing 1: General reconstruction workflow

for O : num_iterations # 1 - 500+
for O : num_slices # 1 - 1000+
for 0 : num_angles # 360 - 1500+

for 0 : num_pixels # 512 - 2048+
do_calculation(...)

o s W N e

® | oop over iterations is order-dependent

® | oop over slices is fully independent

® Loop over projection angles is fully independent (for target algorithms)
® | oop over number of pixels is conditionally independent

O When projection angles are processed in parallel, updating pixels can become
data-race

Office of

@ENERGY 3o NERGE @R oy G , J. R. Madsen (NERSC-LBL

Initial CPU Implementation Ray-based Reconstruction

® A pool of threads is introduced at the Python-level per-slice
O Perfect scaling w.r.t. # of slices

® Calculates the traversal distance through the pixels at the given projection
angle and offset from center as a weighting factor

=4

® The value of the projection is “distributed” along all the intersecting pixels
according to the calculated weighting factor

NERSC GPU for Scienct J. R. Madsen (NERSC-LBL)

Performance on the GPU

® This algorithm required several supplementary arrays for each iteration of the
projection angles

1| // arrays of intersection points

2| float* ax = (float*) malloc((ngridx + ngridy) * sizeof(float));
3| float* ay = (float*) malloc((ngridx + ngridy) * sizeof(float));
4| float* bx = (float*) malloc((ngridx + ngridy) * sizeof(float));
5| float* by = (float*) malloc((ngridx + ngridy) * sizeof(float));
6| // sorted intersection points

7| float* coorx = (float*) malloc((ngridx + ngridy) * sizeof(float));
8| float* coory = (float*) malloc((ngridx + ngridy) * sizeof(float));
9| // distances between intersection points and index mapping

10| float* dist = (float*) malloc((ngridx + ngridy) * sizeof(float));
1l int* indi = (int*) malloc((ngridx + ngridy) * sizeof (int));

e Common optimizations were implementated
@ Minimize data transfers
@® Introduced streams

© Block and grid size optimizations

Office of

@ENERGY 3o NERGE @R oy G , J. R. Madsen (NERSC-LBL

Performance on the GPU

® Significant progress was achieved w.r.t. original GPU implementation but was
still slightly slower than CPU

“Sorting” and “trimming” were significant bottlenecks = consumed 95% of
run-time

Memory access was inherently strided in a main kernel (and atomic op)

1| for(int n = 0; n < csize - 1; ++n)
2| datald + p*dx + s*dtxdx] += model[indi[n] + s*ry*rz] * dist([n];

® Given the relatively similar compute times on CPU vs. GPU, a secondary
thread-pool was introduced per “Python” thread to handle large data sets
with 1,000+ slices

O The idea here was to increase parallelism and further sub-divide the work

between the CPU and GPU =- use GPU to supplement CPU when exceeding
of cores

O If GPU began to out-perform CPU = offload to GPU until OOM and the
threads would fall back to CPU

NERSC GPU for Science J. R. Madsen (NERSC-LBL) July 2, 2019

Performance on the GPU

® Summary: optimizing an algorithm that was designed for the CPU

% | Office of

Y | scence NERSC GPU for S J. R. Madsen (NERSC-

Finding an Alternative Approach Rotation-based Reconstruction

® TomoPy lead noted there was a rotation-based technique no longer used in
tomography (for performance reasons) that removed the sorting and
trimming requirements and where all the weight became 1

® Rotation-based method was computationally expensive:

O Rotated the entire ROI to be parallel with the incident ray

O interpolated the pixels to their new coordinates

O Required padding the projections (i.e., larger reconstruction) to account for
pixel loss during rotation

® |n addition to removing the sorting and trimming bottlenecks, the method
also aligned the memory access

® |n other words, there was an alternative algorithm that was
more computationally expensive and increased the problem size but removed
our parallelism bottlenecks. . .

Office of

@EnNERGY S NERSC GPU for Science D. J. R. Madsen (NERSC-LBL)

Finding an Alternative Approach Rotating the ROI to 45 degrees

RNy

Figure 1: Reconstructed image is shown for demonstration purposes

Office of

@&nErRaY <o NERSC GPU for Science D J. R. Madsen (NERSC-LBL)

Final GPU implementation

® The new algorithm essentially turned the per-projection workflow into:
@ Rotate ROl by —0
@ Distribute projection value along a row of pixel values in ROI
© Rotate ROl by +6
@ Update reconstruction

® Fach thread started at the Python level is assigned a device in round-robin
fashion:

int num_devices;

cudaGetDeviceCount (&num_devices) ;

static std::atomic<int> thread_counter;
cudaSetDevice((thread_counter++) % num_devices);

2w N

® Instead of creating a pool of CUDA streams for the parallel loop over
projection angles, the secondary thread-pool was retained = each thread in
secondary pool created one CUDA stream

O e.g., Instead of 1 thread with 12 streams = 12 threads with 1 stream

Office of

@EnNERGY S NERSC GPU for Scie J. R. Madsen (NERSC-LBL)

® |Implementation tip: Host threads can be used in lieu of explicit CUDA
streams in certain situation

O NVCC compiler flag “--default-stream per-thread” will cause the default
stream (0) to be asynchronous w.r.t. other host threads but may not
propagate to external library calls

O Replace cudaDeviceSynchronize() with cudaStreamSynchronize (0)
® The formerly discarded algorithm became a quintessential example of why
GPUs were created in the first place

® Recorded performance numbers w.r.t. Edison supercomputer: 50 iterations,
1-24 slices, 1500 projections angles, 2048 pixels

O Edison node with 24 threads started at Python level

0 Cori-GPU (V100) node with 8 GPUs and one “Python” thread per GPU each
with ~12-24 secondary threads/streams

® New algorithm introduced interpolation methods: nearest-neighbor, linear,
cubic

NERSC GPU for Scienct J. R. Madsen (NERSC-LBL) July 2, 2019

Results TomoPy

700 ‘ ‘ ‘ ‘
I 1 Slice + 1 thread 632.9

600 ||B01 Slice + 24 threads
= 500)
S 400|
O
&
o 300
3
@ 200 |-
o
(V)]

100

1
ol
Edison Cubic Linear NN

Figure 2: TomoPy single-slice speed-up with various tasking threads on Cori-GPU nodes
w.r.t. TomoPy v1.2

Office of

@EnERGY NERSC GPU for y J. R. Madsen (NERSC-LBL) July 2, 2019 m

Results TomoPy

Table 1: Single-slice reconstruction times (22594.2sec ~ 6.25hr)

Machine | Method ‘ # Thread ‘ Wall time (sec) ‘ Speed-up ‘

Edison Ray 1 22594.2 1
Cori-GPU | Cubic 1 122.2 184.9
Cori-GPU | Linear 102.0 221.5
Cori-GPU | NN 97.3 232.2
Cori-GPU | Cubic 24 57.1 395.7
Cori-GPU | Linear 38.9 580.8
Cori-GPU | NN 35.7 632.9

Office of

@EnNERGY S NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019

Results TomoPy

950 | {1824 Slices / 4 GPU + 24 thread / GPU i
_ 0824 Slices / 8 GPU + 12 thread / GPU 915.1
S 200 ¢
2 150
L
s
< 100
[}
0
o
Y501
1 1
0 \
Edison Cubic Linear NN

Figure 3: TomoPy full node speed-up with 4 and 8 GPUs (96 total threads) on Cori-GPU
nodes w.r.t. TomoPy v1.2

Office of

@ENERsY 2 NERSC GPU for y J. R. Madsen (NERSC-LBL) July 2, 2019

Results TomoPy

Table 2: Scientific throughput reconstruction times (22951.8sec = 6.35hr)

Machine | Method ‘ # GPU ‘ Wall time (sec) ‘ Speed-up ‘

Edison Ray 0 22951.8 1
Cori-GPU | Cubic 4 292.3 78.5
Cori-GPU | Linear 186.3 123.2
Cori-GPU | NN 169.2 135.6
Cori-GPU | Cubic 8 166.5 137.8
Cori-GPU | Linear 117.1 196.0
Cori-GPU | NN 106.7 215.1

Office of

@EnNERGY S NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019

Parallelism Notes

® The secondary thread-pool concept was retained from first developments
based on the idea that:

@ Submitting work to GPU reduced to a large (serial) loop launching kernels

@® Individual CPU cores on HPC machines operate at a low frequency
= serial performance is much slower

© Synchronization on the GPU does not require CPU cycles
= over-subscribe the # of threads relative to the # of CPU cores

@ Amdahl’'s law which states the theoretical speed-up from parallelism is
restricted by the serial portions of the workload

® In the end though, these benefits did not appear to show up at scale

O Subsequent analysis of the CPU time indicated the threads were very busy
= a potential indicator of relevant work

O “Under-the-hood”, CUDA is implementing spin-mutexes at the
synchronization step(s)
= artificially increasing the CPU time

NERSC GPU for Scienct J. R. Madsen (NERSC-LBL) July 2, 2019

@ Original CPU algorithm not well-suited for the GPU

® Introduced an alternative algorithm that was more computationally expensive
and increased the problem size that results in massive speed-up

O Don’t be afraid to restructure the entire problem when there is the
potential to reduce logic in exchange for FLOPS

© Multi-threading does not need to be removed when migrating to the GPU

® When the algorithm runs entirely on the GPU, there is no discernible
performance difference between using threads with a single stream and one
thread with multiple streams

@ If you are planning to do hybrid CPU/GPU work, be wary of spin-mutexes
and investigate the affect of setting device flags,
€.8., cudaSetDeviceFlags(cudaDeviceScheduleSpin) VS.
cudaSetDeviceFlags (cudaDeviceScheduleYield)

O Default is a heuristic based device flag cudaDeviceScheduleAuto

NERSC GPU for Scienct J. R. Madsen (NERSC-LBL) July 2, 2019

	Overview
	Tomographic Reconstruction
	
	Projection

	Reconstruction Algorithm
	Overview

	Initial CPU Implementation
	Ray-based Reconstruction

	Performance on the GPU
	

	Finding an Alternative Approach
	Rotation-based Reconstruction
	Rotating the ROI to 45 degrees

	Final GPU implementation
	Results
	TomoPy

	Parallelism Notes
	

	Summary
	

