
TomoPy
A CUDA Case Study

Jonathan R. Madsen, PhD
� jrmadsen@lbl.gov
National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

July 2, 2019

mailto:jrmadsen@lbl.gov

Tomographic Reconstruction

• Tomographic reconstruction is a
multidimensional inverse problem where
the challenge is to yield an estimate of a
specific system from a finite number of
projections.

• Heavily used technique at light sources
for structural imaging of materials
samples and biological specimens at
high-resolution.

• A series of rays such as B are passed
through a sample and pθ(r1) is recorded
back side (projection)

• In general, a reconstruction starts with
an array of projection angles and the
array of projection values at each
projection angle and
simulates the imaging in reverse.

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 2 / 18

Tomographic Reconstruction Projection

0 0 0 0 3 5 2 4 5 6 3 0 0 0 0

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 3 / 18

Reconstruction Algorithm Overview

Listing 1: General reconstruction workflow

1 for 0 : num_iterations # 1 - 500+

2 for 0 : num_slices # 1 - 1000+

3 for 0 : num_angles # 360 - 1500+

4 for 0 : num_pixels # 512 - 2048+

5 do_calculation(...)

• Loop over iterations is order-dependent

• Loop over slices is fully independent

• Loop over projection angles is fully independent (for target algorithms)

• Loop over number of pixels is conditionally independent

◦ When projection angles are processed in parallel, updating pixels can become
data-race

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 4 / 18

Initial CPU Implementation Ray-based Reconstruction

• A pool of threads is introduced at the Python-level per-slice

◦ Perfect scaling w.r.t. # of slices

• Calculates the traversal distance through the pixels at the given projection
angle and offset from center as a weighting factor

• The value of the projection is “distributed” along all the intersecting pixels
according to the calculated weighting factor

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 5 / 18

Performance on the GPU

• This algorithm required several supplementary arrays for each iteration of the
projection angles

1 // arrays of intersection points

2 float* ax = (float*) malloc((ngridx + ngridy) * sizeof(float));

3 float* ay = (float*) malloc((ngridx + ngridy) * sizeof(float));

4 float* bx = (float*) malloc((ngridx + ngridy) * sizeof(float));

5 float* by = (float*) malloc((ngridx + ngridy) * sizeof(float));

6 // sorted intersection points

7 float* coorx = (float*) malloc((ngridx + ngridy) * sizeof(float));

8 float* coory = (float*) malloc((ngridx + ngridy) * sizeof(float));

9 // distances between intersection points and index mapping

10 float* dist = (float*) malloc((ngridx + ngridy) * sizeof(float));

11 int* indi = (int*) malloc((ngridx + ngridy) * sizeof(int));

• Common optimizations were implementated

1 Minimize data transfers

2 Introduced streams

3 Block and grid size optimizations

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 6 / 18

Performance on the GPU

• Significant progress was achieved w.r.t. original GPU implementation but was
still slightly slower than CPU

• “Sorting” and “trimming” were significant bottlenecks ⇒ consumed 95% of
run-time

• Memory access was inherently strided in a main kernel (and atomic op)

1 for(int n = 0; n < csize - 1; ++n)

2 data[d + p*dx + s*dt*dx] += model[indi[n] + s*ry*rz] * dist[n];

• Given the relatively similar compute times on CPU vs. GPU, a secondary
thread-pool was introduced per “Python” thread to handle large data sets
with 1,000+ slices

◦ The idea here was to increase parallelism and further sub-divide the work
between the CPU and GPU ⇒ use GPU to supplement CPU when exceeding
of cores

◦ If GPU began to out-perform CPU ⇒ offload to GPU until OOM and the
threads would fall back to CPU

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 7 / 18

Performance on the GPU

• Summary: optimizing an algorithm that was designed for the CPU

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 8 / 18

Finding an Alternative Approach Rotation-based Reconstruction

• TomoPy lead noted there was a rotation-based technique no longer used in
tomography (for performance reasons) that removed the sorting and
trimming requirements and where all the weight became 1

• Rotation-based method was computationally expensive:

◦ Rotated the entire ROI to be parallel with the incident ray

◦ interpolated the pixels to their new coordinates

◦ Required padding the projections (i.e., larger reconstruction) to account for
pixel loss during rotation

• In addition to removing the sorting and trimming bottlenecks, the method
also aligned the memory access

• In other words, there was an alternative algorithm that was
more computationally expensive and increased the problem size but removed
our parallelism bottlenecks. . .

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 9 / 18

Finding an Alternative Approach Rotating the ROI to 45 degrees

Figure 1: Reconstructed image is shown for demonstration purposes

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 10 / 18

Final GPU implementation

• The new algorithm essentially turned the per-projection workflow into:

1 Rotate ROI by −θ

2 Distribute projection value along a row of pixel values in ROI

3 Rotate ROI by +θ

4 Update reconstruction

• Each thread started at the Python level is assigned a device in round-robin
fashion:

1 int num_devices;

2 cudaGetDeviceCount(&num_devices);

3 static std::atomic<int> thread_counter;

4 cudaSetDevice((thread_counter++) % num_devices);

• Instead of creating a pool of CUDA streams for the parallel loop over
projection angles, the secondary thread-pool was retained ⇒ each thread in
secondary pool created one CUDA stream

◦ e.g., Instead of 1 thread with 12 streams ⇒ 12 threads with 1 stream

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 11 / 18

Results

• Implementation tip: Host threads can be used in lieu of explicit CUDA
streams in certain situation

◦ NVCC compiler flag “--default-stream per-thread” will cause the default
stream (0) to be asynchronous w.r.t. other host threads but may not
propagate to external library calls

◦ Replace cudaDeviceSynchronize() with cudaStreamSynchronize(0)

• The formerly discarded algorithm became a quintessential example of why
GPUs were created in the first place

• Recorded performance numbers w.r.t. Edison supercomputer: 50 iterations,
1-24 slices, 1500 projections angles, 2048 pixels

◦ Edison node with 24 threads started at Python level

◦ Cori-GPU (V100) node with 8 GPUs and one “Python” thread per GPU each
with ∼12-24 secondary threads/streams

• New algorithm introduced interpolation methods: nearest-neighbor, linear,
cubic

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 12 / 18

Results TomoPy

Edison NNLinearCubic
0

100

200

300

400

500

600

700

1

232.2221.5
184.9

1

632.9

580.8

395.7

S
p
ee
d-
up

fa
ct
or

(t
0
/t

i)

1 Slice + 1 thread
1 Slice + 24 threads

Figure 2: TomoPy single-slice speed-up with various tasking threads on Cori-GPU nodes
w.r.t. TomoPy v1.2

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 13 / 18

Results TomoPy

Table 1: Single-slice reconstruction times (22594.2sec ≈ 6.25hr)

Machine Method # Thread Wall time (sec) Speed-up

Edison Ray 1 22594.2 1

Cori-GPU Cubic 1 122.2 184.9

Cori-GPU Linear 102.0 221.5

Cori-GPU NN 97.3 232.2

Cori-GPU Cubic 24 57.1 395.7

Cori-GPU Linear 38.9 580.8

Cori-GPU NN 35.7 632.9

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 14 / 18

Results TomoPy

Edison NNLinearCubic
0

50

100

150

200

250

1

135.6
123.2

78.5

1

215.1
196

137.8

S
p
ee
d-
up

fa
ct
or

(t
0
/t

i)
24 Slices / 4 GPU + 24 thread / GPU

24 Slices / 8 GPU + 12 thread / GPU

Figure 3: TomoPy full node speed-up with 4 and 8 GPUs (96 total threads) on Cori-GPU
nodes w.r.t. TomoPy v1.2

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 15 / 18

Results TomoPy

Table 2: Scientific throughput reconstruction times (22951.8sec ≈ 6.35hr)

Machine Method # GPU Wall time (sec) Speed-up

Edison Ray 0 22951.8 1

Cori-GPU Cubic 4 292.3 78.5

Cori-GPU Linear 186.3 123.2

Cori-GPU NN 169.2 135.6

Cori-GPU Cubic 8 166.5 137.8

Cori-GPU Linear 117.1 196.0

Cori-GPU NN 106.7 215.1

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 16 / 18

Parallelism Notes

• The secondary thread-pool concept was retained from first developments
based on the idea that:

1 Submitting work to GPU reduced to a large (serial) loop launching kernels

2 Individual CPU cores on HPC machines operate at a low frequency
⇒ serial performance is much slower

3 Synchronization on the GPU does not require CPU cycles
⇒ over-subscribe the # of threads relative to the # of CPU cores

4 Amdahl’s law which states the theoretical speed-up from parallelism is
restricted by the serial portions of the workload

• In the end though, these benefits did not appear to show up at scale

◦ Subsequent analysis of the CPU time indicated the threads were very busy
⇒ a potential indicator of relevant work

◦ “Under-the-hood”, CUDA is implementing spin-mutexes at the
synchronization step(s)
⇒ artificially increasing the CPU time

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 17 / 18

Summary

1 Original CPU algorithm not well-suited for the GPU

2 Introduced an alternative algorithm that was more computationally expensive
and increased the problem size that results in massive speed-up

◦ Don’t be afraid to restructure the entire problem when there is the
potential to reduce logic in exchange for FLOPS

3 Multi-threading does not need to be removed when migrating to the GPU

4 When the algorithm runs entirely on the GPU, there is no discernible
performance difference between using threads with a single stream and one
thread with multiple streams

5 If you are planning to do hybrid CPU/GPU work, be wary of spin-mutexes
and investigate the affect of setting device flags,
e.g., cudaSetDeviceFlags(cudaDeviceScheduleSpin) vs.
cudaSetDeviceFlags(cudaDeviceScheduleYield)

◦ Default is a heuristic based device flag cudaDeviceScheduleAuto

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 18 / 18

	Overview
	Tomographic Reconstruction
	
	Projection

	Reconstruction Algorithm
	Overview

	Initial CPU Implementation
	Ray-based Reconstruction

	Performance on the GPU
	

	Finding an Alternative Approach
	Rotation-based Reconstruction
	Rotating the ROI to 45 degrees

	Final GPU implementation
	Results
	TomoPy

	Parallelism Notes
	

	Summary
	

