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Tomographic Reconstruction

• Tomographic reconstruction is a
multidimensional inverse problem where
the challenge is to yield an estimate of a
specific system from a finite number of
projections.

• Heavily used technique at light sources
for structural imaging of materials
samples and biological specimens at
high-resolution.

• A series of rays such as B are passed
through a sample and pθ(r1) is recorded
back side (projection)

• In general, a reconstruction starts with
an array of projection angles and the
array of projection values at each
projection angle and
simulates the imaging in reverse.
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Reconstruction Algorithm Overview

Listing 1: General reconstruction workflow

1 for 0 : num_iterations # 1 - 500+

2 for 0 : num_slices # 1 - 1000+

3 for 0 : num_angles # 360 - 1500+

4 for 0 : num_pixels # 512 - 2048+

5 do_calculation(...)

• Loop over iterations is order-dependent

• Loop over slices is fully independent

• Loop over projection angles is fully independent (for target algorithms)

• Loop over number of pixels is conditionally independent

◦ When projection angles are processed in parallel, updating pixels can become
data-race
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Initial CPU Implementation Ray-based Reconstruction

• A pool of threads is introduced at the Python-level per-slice

◦ Perfect scaling w.r.t. # of slices

• Calculates the traversal distance through the pixels at the given projection
angle and offset from center as a weighting factor

• The value of the projection is “distributed” along all the intersecting pixels
according to the calculated weighting factor
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Performance on the GPU

• This algorithm required several supplementary arrays for each iteration of the
projection angles

1 // arrays of intersection points

2 float* ax = (float*) malloc((ngridx + ngridy) * sizeof(float));

3 float* ay = (float*) malloc((ngridx + ngridy) * sizeof(float));

4 float* bx = (float*) malloc((ngridx + ngridy) * sizeof(float));

5 float* by = (float*) malloc((ngridx + ngridy) * sizeof(float));

6 // sorted intersection points

7 float* coorx = (float*) malloc((ngridx + ngridy) * sizeof(float));

8 float* coory = (float*) malloc((ngridx + ngridy) * sizeof(float));

9 // distances between intersection points and index mapping

10 float* dist = (float*) malloc((ngridx + ngridy) * sizeof(float));

11 int* indi = (int*) malloc((ngridx + ngridy) * sizeof(int));

• Common optimizations were implementated

1 Minimize data transfers

2 Introduced streams

3 Block and grid size optimizations
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Performance on the GPU

• Significant progress was achieved w.r.t. original GPU implementation but was
still slightly slower than CPU

• “Sorting” and “trimming” were significant bottlenecks ⇒ consumed 95% of
run-time

• Memory access was inherently strided in a main kernel (and atomic op)

1 for(int n = 0; n < csize - 1; ++n)

2 data[d + p*dx + s*dt*dx] += model[indi[n] + s*ry*rz] * dist[n];

• Given the relatively similar compute times on CPU vs. GPU, a secondary
thread-pool was introduced per “Python” thread to handle large data sets
with 1,000+ slices

◦ The idea here was to increase parallelism and further sub-divide the work
between the CPU and GPU ⇒ use GPU to supplement CPU when exceeding
# of cores

◦ If GPU began to out-perform CPU ⇒ offload to GPU until OOM and the
threads would fall back to CPU
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Performance on the GPU

• Summary: optimizing an algorithm that was designed for the CPU
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Finding an Alternative Approach Rotation-based Reconstruction

• TomoPy lead noted there was a rotation-based technique no longer used in
tomography (for performance reasons) that removed the sorting and
trimming requirements and where all the weight became 1

• Rotation-based method was computationally expensive:

◦ Rotated the entire ROI to be parallel with the incident ray

◦ interpolated the pixels to their new coordinates

◦ Required padding the projections (i.e., larger reconstruction) to account for
pixel loss during rotation

• In addition to removing the sorting and trimming bottlenecks, the method
also aligned the memory access

• In other words, there was an alternative algorithm that was
more computationally expensive and increased the problem size but removed
our parallelism bottlenecks. . .
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Finding an Alternative Approach Rotating the ROI to 45 degrees

Figure 1: Reconstructed image is shown for demonstration purposes
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Final GPU implementation

• The new algorithm essentially turned the per-projection workflow into:

1 Rotate ROI by −θ

2 Distribute projection value along a row of pixel values in ROI

3 Rotate ROI by +θ

4 Update reconstruction

• Each thread started at the Python level is assigned a device in round-robin
fashion:

1 int num_devices;

2 cudaGetDeviceCount(&num_devices);

3 static std::atomic<int> thread_counter;

4 cudaSetDevice((thread_counter++) % num_devices);

• Instead of creating a pool of CUDA streams for the parallel loop over
projection angles, the secondary thread-pool was retained ⇒ each thread in
secondary pool created one CUDA stream

◦ e.g., Instead of 1 thread with 12 streams ⇒ 12 threads with 1 stream

NERSC GPU for Science Day J. R. Madsen (NERSC-LBL) July 2, 2019 11 / 18



Results

• Implementation tip: Host threads can be used in lieu of explicit CUDA
streams in certain situation

◦ NVCC compiler flag “--default-stream per-thread” will cause the default
stream (0) to be asynchronous w.r.t. other host threads but may not
propagate to external library calls

◦ Replace cudaDeviceSynchronize() with cudaStreamSynchronize(0)

• The formerly discarded algorithm became a quintessential example of why
GPUs were created in the first place

• Recorded performance numbers w.r.t. Edison supercomputer: 50 iterations,
1-24 slices, 1500 projections angles, 2048 pixels

◦ Edison node with 24 threads started at Python level

◦ Cori-GPU (V100) node with 8 GPUs and one “Python” thread per GPU each
with ∼12-24 secondary threads/streams

• New algorithm introduced interpolation methods: nearest-neighbor, linear,
cubic
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Results TomoPy
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Figure 2: TomoPy single-slice speed-up with various tasking threads on Cori-GPU nodes
w.r.t. TomoPy v1.2
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Results TomoPy

Table 1: Single-slice reconstruction times (22594.2sec ≈ 6.25hr)

Machine Method # Thread Wall time (sec) Speed-up

Edison Ray 1 22594.2 1

Cori-GPU Cubic 1 122.2 184.9

Cori-GPU Linear 102.0 221.5

Cori-GPU NN 97.3 232.2

Cori-GPU Cubic 24 57.1 395.7

Cori-GPU Linear 38.9 580.8

Cori-GPU NN 35.7 632.9
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Results TomoPy
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Figure 3: TomoPy full node speed-up with 4 and 8 GPUs (96 total threads) on Cori-GPU
nodes w.r.t. TomoPy v1.2
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Results TomoPy

Table 2: Scientific throughput reconstruction times (22951.8sec ≈ 6.35hr)

Machine Method # GPU Wall time (sec) Speed-up

Edison Ray 0 22951.8 1

Cori-GPU Cubic 4 292.3 78.5

Cori-GPU Linear 186.3 123.2

Cori-GPU NN 169.2 135.6

Cori-GPU Cubic 8 166.5 137.8

Cori-GPU Linear 117.1 196.0

Cori-GPU NN 106.7 215.1
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Parallelism Notes

• The secondary thread-pool concept was retained from first developments
based on the idea that:

1 Submitting work to GPU reduced to a large (serial) loop launching kernels

2 Individual CPU cores on HPC machines operate at a low frequency
⇒ serial performance is much slower

3 Synchronization on the GPU does not require CPU cycles
⇒ over-subscribe the # of threads relative to the # of CPU cores

4 Amdahl’s law which states the theoretical speed-up from parallelism is
restricted by the serial portions of the workload

• In the end though, these benefits did not appear to show up at scale

◦ Subsequent analysis of the CPU time indicated the threads were very busy
⇒ a potential indicator of relevant work

◦ “Under-the-hood”, CUDA is implementing spin-mutexes at the
synchronization step(s)
⇒ artificially increasing the CPU time
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Summary

1 Original CPU algorithm not well-suited for the GPU

2 Introduced an alternative algorithm that was more computationally expensive
and increased the problem size that results in massive speed-up

◦ Don’t be afraid to restructure the entire problem when there is the
potential to reduce logic in exchange for FLOPS

3 Multi-threading does not need to be removed when migrating to the GPU

4 When the algorithm runs entirely on the GPU, there is no discernible
performance difference between using threads with a single stream and one
thread with multiple streams

5 If you are planning to do hybrid CPU/GPU work, be wary of spin-mutexes
and investigate the affect of setting device flags,
e.g., cudaSetDeviceFlags(cudaDeviceScheduleSpin) vs.
cudaSetDeviceFlags(cudaDeviceScheduleYield)

◦ Default is a heuristic based device flag cudaDeviceScheduleAuto
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