
LLNL-PRES-777737
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

RAJA: A Technical Perspective

David BeckingsaleJuly 2-3, 2019

NERSC GPUs for Science Day

LLNL-PRES-777737
2

§ RAJA is a library of C++ abstractions that allow you to write single-source loop kernels
that can be run on different platforms by re-compiling your code
— Multicore CPUs, Xeon Phi, NVIDIA GPUs, …

§ RAJA helps you insulate your code from hardware and programming model-specific
implementation details
— SIMD vectorization, OpenMP, CUDA, …

§ RAJA supports many parallel patterns and performance tuning options
— Simple and complex loop kernels
— Reductions, scans, atomic operations
— Loop tiling, thread-local data, GPU shared memory, …

RAJA and performance portability

RAJA provides building blocks that extend the generally-accepted “parallel for” idiom.

LLNL-PRES-777737
3

RAJA design goals focus on usability and developer
productivity

§ Applications should maintain single-source kernels (if possible)

§ Easy to understand for app developers (most are not CS experts)

§ Allow for incremental and selective use

§ Don’t force major disruption to application source code

§ Promote implementation flexibility via clean encapsulation

§ Make it easy to parameterize execution via types

§ Enable systematic performance tuning

RAJA is developed collaboratively with production application teams.

LLNL-PRES-777737
4

A loop written with a standard programming language
exposes all aspects of execution explicitly

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

Daxpy operation: x = a * x + y, where x, y are vectors of length N, a is a scalar

C-style for-loop

In the implementation, loop iteration order, data access, etc. are explicit in source code.

LLNL-PRES-777737
5

RAJA encapsulates execution details so a loop
can run differently without changing source code

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

C-style for-loop

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i)
{

y[i] += a * x[i];
});

LLNL-PRES-777737
6

RAJA encapsulates execution details so a loop
can run differently without changing source code

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

C-style for-loop

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i)
{

y[i] += a * x[i];
});

Typically, these are
defined in a header file.

Writing a loop with RAJA requires a change to the loop header, but body typically is unchanged.

LLNL-PRES-777737
7

RAJA loop execution consists of four core concepts
using EXEC_POLICY = ...;
RAJA::RangeSegment range(0, N);

RAJA::forall< EXEC_POLICY >(range, [=] (int i)
{

a[i] += c * b[i];
});

1. Loop execution template (e.g., ‘forall’)

2. Loop execution policy (EXEC_POLICY)

3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)

LLNL-PRES-777737
8

RAJA::forall< EXEC_POLICY > (iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall method runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)

LLNL-PRES-777737
9

RAJA::forall< EXEC_POLICY > (iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall template runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (stride-1 range, list of indices, etc.)

LLNL-PRES-777737
10

RAJA::forall< EXEC_POLICY > (iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall template runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (contiguous range, list of indices, etc.)

§ Loop body is cast as a C++ lambda expression
— A closure that stores a function with a data environment
— Function argument is the loop variable

The programmer must make sure the loop
body works with the chosen execution

policy; e.g., thread safety.

LLNL-PRES-777737
11

RAJA::forall< EXEC_POLICY >(range, [=] (int i)
{

a[i] += c * b[i];
});

RAJA::simd_exec

RAJA::omp_parallel_for_exec

RAJA::cuda_exec<BLOCK_SIZE>

RAJA::omp_target_parallel_for_exec<MAX_THREADS_PER_TEAM>

RAJA::tbb_for_exec

By changing the execution policy, you change
the way the loop will run

Examples of RAJA loop
execution policy types.

LLNL-PRES-777737
12

§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

});

Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management

LLNL-PRES-777737
13

§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

§ Memory management options:
— Manual – use cudaMalloc(), cudaMemcpy() to allocate, copy to/from device
— Unified Memory (UM) – use cudaMallocManaged(), paging on demand
— CHAI (https://github.com/LLNL/CHAI) – automatic data copies as needed

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

}); Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management

CHAI was developed to complement to RAJA.

LLNL-PRES-777737
14

chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall<RAJA::cuda_exec>(range,
[=] __device__ (int i) {

a[i] = b[i];
});

RAJA::forall<RAJA::seq>(range,
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
});

CPU
memory

a b

GPU
memory

LLNL-PRES-777737
15

chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall< RAJA::cuda_exec >(range,
[=] __device__ (int i) {

a[i] = b[i];
});

RAJA::forall< RAJA::seq >(range,
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
});

CPU
memory

GPU
memory

a ba b

LLNL-PRES-777737
16

chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall< RAJA::cuda_exec >(range,
[=] __device__ (int i) {

a[i] = b[i];
});

RAJA::forall< RAJA::seq >(range,
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
});

CPU
memory

a b

GPU
memory

a b

CHAI supports UM too, so you can assess its performance.

LLNL-PRES-777737
17

Recent RAJA development has focused on complex kernels,
multi-dimensional data, and advanced execution features

using KERNEL_POL = ... ;

RAJA::kernel<KERNEL_POL>(
RAJA::make_tuple(col_range, row_range),

[=](int col, int row) {

Atview(col, row) = Aview(row, col)

}
);

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

At[row + N*col] = A[col + N*row];

}
}

Matrix transpose kernel (C-style)
Multiple iteration spaces
& lambda arguments

RAJA Views enable flexible indexing
(see RAJA user guide)

using KERNEL_POL = RAJA::KernelPolicy<
For<1, exec_policy_row,

For<0, exec_policy_col,
Lambda<0>

>
>

>;

Change execution policy, not kernel code, to change
how loop runs; e.g.,
§ Permute loop levels
§ OpenMP variations, including collapse
§ CUDA kernel block-thread mapping variations
§ Tiled loops (cache-blocking, GPU shared memory)

LLNL-PRES-777737
18

The RAJA::kernel interface uses four basic concepts
that are analogous to those with RAJA::forall

1. Kernel execution template (‘RAJA::kernel’)

2. Kernel execution policies (in ‘KERNEL_POL’)

3. Kernel iteration spaces (e.g., ‘RangeSegments’)

4. Kernel body (lambda expressions)

using KERNEL_POL = ... ;

RAJA::kernel<KERNEL_POL>(
RAJA::make_tuple(col_range, row_range),

[=](int col, int row) {
Atview(col, row) = Aview(row, col)

}
);

LLNL-PRES-777737
19

§ A KernelPolicy is built from “Statements” and “StatementLists”

— A Statement is an action: execute a loop, invoke a lambda, synchronize threads, etc. ,

— A StatementList is an ordered list of Statements processed as a sequence; e.g.,

RAJA::KernelPolicy constructs comprise a
simple DSL that relies only on standard C++11 support

A RAJA::KernelPolicy type is a StatementList.

For<0, exec_policy0,
Lambda<0>,
For<2, exec_policy2,

Lambda<1>
>

>

Lambda<0>For<0, exec_pol, ...> CudaSyncThreads

LLNL-PRES-777737
20

§ Simple and complex loop patterns
— Non-perfectly nested loops
— Loop tiling

§ Kernel transformations (via execution policy changes)
— Change order of loop iterations
— Permute loop nest ordering
— Multi-dimensional data views with offsets and index permutations
— Direct CUDA thread-block mapping control
— CPU/GPU shared and thread local memory

§ Portable reductions, scans, and atomic operations

§ Multiple execution back-ends: sequential, SIMD, OpenMP (CPU, target offload),
CUDA, AMD HIP (in progress), Intel Threading Building Blocks (experimental)

RAJA supports a variety of parallel constructs and loop patterns

LLNL-PRES-777737
21

RAJA is an open source project developed by CS
researchers, app developers, and vendors

§ User Guide & Tutorial: https://readthedocs.org/projects/raja/
§ RAJA Performance Suite: https://github.com/LLNL/RAJAPerf

https://github.com/LLNL/RAJA

RAJA is supported by LLNL programs (ASC and ATDM) and the ECP (ST).

https://readthedocs.org/projects/raja/
https://github.com/LLNL/RAJAPerf

LLNL-PRES-777737
22

— Adam Kunen

— Scott Moe (AMD)

— Olga Pearce

— Tom Scogland
— Arturo Vargas

Acknowledgements

RAJA Team and contributors

— Rich Hornung (PL)

— David Beckingsale

— Jason Burmark
— Noel Chalmers (AMD)

— Robert Chen

— Matt Cordery (IBM)

— Chip Freitag (AMD)

— Jeff Hammond (Intel)
— Holger Jones

— Jeff Keasler

— Will Killian (Millersville University)

Plus, all the application developers,
Livermore Computing staff, vendor
contributors and compiler teams, and
others who have helped make these
projects more robust and viable for
production codes.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

