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§ RAJA is a library of C++ abstractions that allow you to write single-source loop kernels 
that can be run on different platforms by re-compiling your code
— Multicore CPUs, Xeon Phi, NVIDIA GPUs, …

§ RAJA helps you insulate your code from hardware and programming model-specific 
implementation details
— SIMD vectorization, OpenMP, CUDA, …

§ RAJA supports many parallel patterns and performance tuning options
— Simple and complex loop kernels
— Reductions, scans, atomic operations
— Loop tiling, thread-local data, GPU shared memory, …

RAJA and performance portability

RAJA provides building blocks that extend the generally-accepted “parallel for” idiom.
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RAJA design goals focus on usability and developer 
productivity

§ Applications should maintain single-source kernels (if possible)

§ Easy to understand for app developers (most are not CS experts)

§ Allow for incremental and selective use

§ Don’t force major disruption to application source code

§ Promote implementation flexibility via clean encapsulation

§ Make it easy to parameterize execution via types

§ Enable systematic performance tuning

RAJA is developed collaboratively with production application teams.
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A loop written with a standard programming language 
exposes all aspects of execution explicitly

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

Daxpy operation: x = a * x + y, where x, y are vectors of length N, a is a scalar 

C-style for-loop

In the implementation, loop iteration order, data access, etc. are explicit in source code.
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RAJA encapsulates execution details so a loop 
can run differently without changing source code

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

C-style for-loop

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i) 
{

y[i] += a * x[i];
} );
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RAJA encapsulates execution details so a loop 
can run differently without changing source code

for (int i = 0; i < N; ++i)
{

y[i] += a * x[i];
}

C-style for-loop

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i) 
{

y[i] += a * x[i];
} );

Typically, these are 
defined in a header file.

Writing a loop with RAJA requires a change to the loop header, but body typically is unchanged.



LLNL-PRES-777737
7

RAJA loop execution consists of four core concepts 
using EXEC_POLICY = ...;
RAJA::RangeSegment range(0, N);

RAJA::forall< EXEC_POLICY >( range, [=] (int i) 
{

a[i] += c * b[i];
} );

1. Loop execution template (e.g., ‘forall’)

2. Loop execution policy (EXEC_POLICY)

3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall method runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall template runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (stride-1 range, list of indices, etc.)
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall template runs loop iterations based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (contiguous range, list of indices, etc.)

§ Loop body is cast as a C++ lambda expression
— A closure that stores a function with a data environment
— Function argument is the loop variable

The programmer must make sure the loop 
body works with the chosen execution 

policy; e.g., thread safety.
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RAJA::forall< EXEC_POLICY >( range, [=] (int i) 
{

a[i] += c * b[i];
} );

RAJA::simd_exec

RAJA::omp_parallel_for_exec

RAJA::cuda_exec<BLOCK_SIZE>

RAJA::omp_target_parallel_for_exec<MAX_THREADS_PER_TEAM>

RAJA::tbb_for_exec

By changing the execution policy, you change
the way the loop will run  

Examples of RAJA loop 
execution policy types.
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§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

} );

Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management
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§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

§ Memory management options:
— Manual – use cudaMalloc( ), cudaMemcpy( ) to allocate, copy to/from device 
— Unified Memory (UM) – use cudaMallocManaged( ), paging on demand
— CHAI (https://github.com/LLNL/CHAI) – automatic data copies as needed

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

} ); Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management

CHAI was developed to complement to RAJA.
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chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall<RAJA::cuda_exec>(range,
[=] __device__ (int i) {

a[i] = b[i];
} );

RAJA::forall<RAJA::seq>(range, 
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
} );

CPU
memory

a b

GPU
memory
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chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall< RAJA::cuda_exec >(range,
[=] __device__ (int i) {

a[i] = b[i];
} );

RAJA::forall< RAJA::seq >(range, 
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
} );

CPU
memory

GPU
memory

a ba b
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chai::ManagedArray<int> a...;
chai::ManagedArray<const int> b...;

RAJA::forall< RAJA::cuda_exec >(range,
[=] __device__ (int i) {

a[i] = b[i];
} );

RAJA::forall< RAJA::seq >(range, 
[=] (int i) {

printf("%d, %d \n”, a[i],b[i]);
} );

CPU
memory

a b

GPU
memory

a b

CHAI supports UM too, so you can assess its performance.
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Recent RAJA development has focused on complex kernels, 
multi-dimensional data, and advanced execution features

using KERNEL_POL = ... ;

RAJA::kernel<KERNEL_POL>(
RAJA::make_tuple(col_range, row_range),

[=](int col, int row) {

Atview(col, row) = Aview(row, col)

} 
);

for ( int row = 0; row < N; ++row ) {
for ( int col = 0; col < N; ++col) {

At[row + N*col] = A[col + N*row];

} 
}

Matrix transpose kernel (C-style) 
Multiple iteration spaces 
& lambda arguments

RAJA Views enable flexible indexing
(see RAJA user guide)

using KERNEL_POL = RAJA::KernelPolicy< 
For<1, exec_policy_row,

For<0, exec_policy_col,
Lambda<0>

>
>

>;

Change execution policy, not kernel code, to change 
how loop runs; e.g., 
§ Permute loop levels
§ OpenMP variations, including collapse
§ CUDA kernel block-thread mapping variations
§ Tiled loops (cache-blocking, GPU shared memory)



LLNL-PRES-777737
18

The RAJA::kernel interface uses four basic concepts 
that are analogous to those with RAJA::forall

1. Kernel execution template (‘RAJA::kernel’)

2. Kernel execution policies (in ‘KERNEL_POL’)

3. Kernel iteration spaces (e.g., ‘RangeSegments’)

4. Kernel body (lambda expressions)

using KERNEL_POL = ... ;

RAJA::kernel<KERNEL_POL>(
RAJA::make_tuple(col_range, row_range),

[=](int col, int row) {
Atview(col, row) = Aview(row, col)

} 
);
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§ A KernelPolicy is built from “Statements” and “StatementLists”

— A Statement is an action: execute a loop, invoke a lambda, synchronize threads, etc. ,

— A StatementList is an ordered list of Statements processed as a sequence; e.g., 

RAJA::KernelPolicy constructs comprise a 
simple DSL that relies only on standard C++11 support

A RAJA::KernelPolicy type is a StatementList.

For<0, exec_policy0,
Lambda<0>,
For<2, exec_policy2,

Lambda<1>
>

>

Lambda<0>For<0, exec_pol, ...> CudaSyncThreads
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§ Simple and complex loop patterns
— Non-perfectly nested loops
— Loop tiling

§ Kernel transformations (via execution policy changes)
— Change order of loop iterations
— Permute loop nest ordering
— Multi-dimensional data views with offsets and index permutations
— Direct CUDA thread-block mapping control
— CPU/GPU shared and thread local memory

§ Portable reductions, scans, and atomic operations

§ Multiple execution back-ends: sequential, SIMD, OpenMP (CPU, target offload), 
CUDA, AMD HIP (in progress), Intel Threading Building Blocks (experimental)

RAJA supports a variety of parallel constructs and loop patterns



LLNL-PRES-777737
21

RAJA is an open source project developed by CS 
researchers, app developers, and vendors

§ User Guide & Tutorial: https://readthedocs.org/projects/raja/
§ RAJA Performance Suite: https://github.com/LLNL/RAJAPerf

https://github.com/LLNL/RAJA

RAJA is supported by LLNL programs (ASC and ATDM) and the ECP (ST).

https://readthedocs.org/projects/raja/
https://github.com/LLNL/RAJAPerf
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