Python on GPUs
(work in progress)

Laurie Stephey
GPUs for Science Day, July 3, 2019

Rollin Thomas, NERSC

O Eiicrey oo Lawrence Berkeley National Laboratory

Y 4
'k
v

Python is friendly and popular

TIOBE Index for June 2019 &)

June Headline: Python continues to soar in the TIOBE index

This month Python has reached again an all time high in TIOBE index of 8.5%. If Python can keep this pace, it will probably replace C and Java in 3 to 4
years time, thus becoming the most popular programming language of the world. The main reason for this is that software engineering is booming. It
attracts lots of newcomers to the field. Java's way of programming is too verbose for beginners. In order to fully understand and run a simple program
such as "hello world" in Java you need to have knowledge of classes, static methods and packages. In C this is a bit easier, but then you will be hit in the
face with explicit memory management. In Python this is just a one-liner. Enough said.

Jun 2019 Jun 2018 Change Programming Language Ratings Change
1 1 Java 15.004% -0.36%
2 2 (o] 13.300% -1.64%
3 4 Python 8.530% +2.77%
4 3 v C++ 7.384% -0.95%
5 6 A Visual Basic .NET 4.624% +0.86%

U.S. DEPARTMENT OF Office of

ENERGY sierce ScCreenshots from: https://www.tiobe.com/tiobe-index/ x”

https://www.tiobe.com/tiobe-index/

So you want to run Python on a GPU? 1-3

You have some Python code you like.
Can you just run it on a GPU?

import numpy as np

from scipy import special

Unfortunately no.

Office of

g}h"‘:;il!!i‘, U.S. DEPARTMENT OF
&y ENERGY science

Y 4
3

What are your options?

Right now, there is no “right” answer

e pyCUDA
(https://mathema.tician.de/software/pycuda/)
e pyOpenCL
(https://mathema.tician.de/software/pyopencl/)
e Rewrite kernels in C, Fortran, CUDA...

Office of

3}_;;‘"‘5""\'3,?’ U.S. DEPARTMENT OF
& ENERGY scionce

https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pyopencl/

DESI: Our case study

v 4
b
v

[Nne nsc -

Goal: High quality output spectra

omposite Spectrum of Emission-li

ne Galaxies (ELGs) from eBOSS Pilot Observations

pectral <
Extractionﬁ-

Wavelength

Spectral Fibers

1 L
2000 3000 4000

L
5000

5000
A[A]

Y 4i
3

CuPy (https://cupy.chainer.org/)

e Developed by Chainer, supported in RAPIDS
e Meant to be a drop-in replacement for NumPy
e Some, but not all, NumPy coverage

NumPy CuPy import numpy as np
numpy . abs cupy.abs import cupy as cp
nnnnnn bsolute .absol
ddddddddddddddddd
s cpu ans = np.abs(data)

py.a g —

py .add d =
numpy .add_newdoc_ufunc = # S ame t h i 1'1 g O 1'1 gp U
nunpy .alen g gpu data = cp.asarray(data)

u = . u

nnnnn .all cupy.all _tem C abS (_data)

lllllllllllllllllllllllllll

gpu_ans = cp.asnumpy (gpu_ temp)
Screenshot from:

Office of

@ ENERGY S https://docs-cupy.chainer.org/en/stable/reference/comparison.htmi e

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/comparison.html

Y 4
L
v

eigh in CuPy

e Important function for DESI
e Compared CuPy eigh on 102 [— kot ma

Cori Volta GPU to Cori b e
Haswell and Cori KNL = el

e Tried “divide-and-conquer?”, | nsuimavio

approach on both CPU and: .| == un: . =
GPU (1, 2, 5, 10 divisions) =~ | s = -

e Volta wins only at very large”’'| ==~
matrix sizes |

e Major pro: eigh really easy . _
to use in CuPy!

Office of

) U.S. DEPARTMENT OF
W ENERGY science

legval in CuPy NEeR

import cupy as cp

e Easy to convert from NumPy
arrays to CuPy arrays
e This function is ~150x slower

ndd = c.shape[©] than the cpu version!
nd = cp.array(ndd)

def legval_cupy(x, c):

10 iterations of legval_numba ran in 0.0012524127960205078 s

10 iterations of legval_cupy ran in 0.1504673957824707 s

xlen = x.shapel[@]

c@=c[-21xcp.ones(xlen) e This implies there is probably
cl=c[-1]*cp.ones(xlen) .
e some undesirable data
for 1 in range(3, ndd, + 1):
tmp = co movement between the cpu and
d =nd -
nd_inv = 1/nd | gpu
A e e e Maybe I’'m just doing it wrong

cupy_result = c@ + clxx
return cupy_result

Office o

% EN ERGY Science

Numba (https://numba.pydata.org/) m

e We like Numba because it has worked well for
JIT-compiling code for a CPU

e Unlike CPU Numba, CUDA Numba doesn’t allow
most NumPy (which is a problem for scientific users
like DESI)

e Numba for GPUs doesn’t look very much like
“normal” Python, looks a lot more like CUDA

Office of

f}.;;‘:‘\!:\g"'!g,‘i U.S. DEPARTMENT OF
@ ENERGY science

https://numba.pydata.org/

legval in Numba for GPU (in progress!)

Step 2: Numba gpu function
Step 1: Invoke kernel with thread information

from numba in
uda.jit
def legval_numba_gpu(x, c, c@, cl, results):

threadsperblock =
blockspergrid = (xx.size + (threadsperblock - 1)) // threadsperblock

nd = len(c)
KSE (ndd = nd
for i in range(niter): xlen = x.size

legval_numba_gpulblockspergrid, threadsperblock](xx, cc, c@, cl, results)

for i in range(3, ndd + 1):

Step 3: Troubleshoot Numba type errors! tmp = co
(Common) Sy s

c@ = c[-1i] - (cix(nd - 1))*nd_inv
cl = tmp + (clxxx(2%nd — 1))*nd_inv
This error is usually caused by passing an argument of a type that is unsupported by the named f
unction.
[1] During: typing of intrinsic-call at /global/cscratchl/sd/stephey/git_repo/specter/py/specter
/util/util.py (299)

results = c@ + clx*xx

File "../git_repo/specter/py/specter/util/util.py", line 299:
def legval_numba_gpu(x, c, c@, cl, results):

<source elided> Step 4: PrOfit!

nd_inv = 1/nd

N

freceer

c@ = c[-i] - (c1*(nd - 1))*nd_inv

BERKELEY LAS

A working cuda.jit example NeF

e Screenshot from:
https://numba.pydata.org/numba-doc/dev/cuda/exa
mples.html

@cuda.jit
def matmul(A, B, C):

“"“""Perform square matrix multiplication of C = A x B

i, j = cuda.grid(2)
if i < C.shapel[@] and j < C.shape[l]:
tmp = 0.
for k in range(A.shape([1]):
tmp += A[i, k] * B[k, jl
Cli, jl = tmp

Office of

f‘v‘.;;‘:‘\!:\w'!g,_‘i U.S. DEPARTMENT OF
@ ENERGY science

https://numba.pydata.org/numba-doc/dev/cuda/examples.html
https://numba.pydata.org/numba-doc/dev/cuda/examples.html

Some words of caution NEF

e Code that runs well on a CPU might not be good for
a GPU

e More than just porting some kernels/functions, it
could require a substantial rewrite

e How to avoid doing this every few years? How to be
able to run on many architectures?

e Unfortunately there are no easy answers

Office of

g}h’;;:il!!ii U.S. DEPARTMENT OF
LY ENERGY science

> 4
v

What have we learned?

e Python on GPUs is still evolving
e We have tried:
o CuPy — difficulty easy, but not every NumPy/SciPy
function
o Numba — difficulty hard, looks less like Python, but
more flexible
e Our job is to help DESI and our users figure out the
best strategy (performance + maintainability +
portability)
e Stay tuned!

Office of

;’ii’l" U.S. DEPARTMENT OF
&y ENERGY science

Thank you!

N

U.S. DEPARTMENT OF 1 - A
Office of ‘\| p

> E N E RGY Science BERKELEY l‘f‘f?,

