
Laurie Stephey
GPUs for Science Day, July 3, 2019
Rollin Thomas, NERSC
Lawrence Berkeley National Laboratory

Python on GPUs
(work in progress!)



Python is friendly and popular 

Screenshots from: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/


So you want to run Python on a GPU?

You have some Python code you like.
Can you just run it on a GPU?

import numpy as np
from scipy import special
import gpu ?

Unfortunately no. 



What are your options?

Right now, there is no “right” answer
● CuPy
● Numba
● pyCUDA 

(https://mathema.tician.de/software/pycuda/)
● pyOpenCL 

(https://mathema.tician.de/software/pyopencl/)
● Rewrite kernels in C, Fortran, CUDA...

https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pyopencl/


DESI: Our case study

Perlmutter

Now

2020

Goal: High quality output spectra

Spectral 
Extraction



CuPy (https://cupy.chainer.org/)

● Developed by Chainer, supported in RAPIDS
● Meant to be a drop-in replacement for NumPy
● Some, but not all, NumPy coverage

import numpy as np
import cupy as cp

cpu_ans = np.abs(data)

#same thing on gpu
gpu_data = cp.asarray(data)
gpu_temp = cp.abs(gpu_data)
gpu_ans = cp.asnumpy(gpu_temp)

Screenshot from: 
https://docs-cupy.chainer.org/en/stable/reference/comparison.html

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/comparison.html


eigh in CuPy

● Important function for DESI
● Compared CuPy eigh on 

Cori Volta GPU to Cori 
Haswell and Cori KNL

● Tried “divide-and-conquer” 
approach on both CPU and 
GPU (1, 2, 5, 10 divisions)

● Volta wins only at very large 
matrix sizes

● Major pro: eigh really easy 
to use in CuPy!



legval in CuPy

● Easy to convert from NumPy 
arrays to CuPy arrays

● This function is ~150x slower 
than the cpu version!

● This implies there is probably 
some undesirable data 
movement between the cpu and 
gpu

● Maybe I’m just doing it wrong



Numba (https://numba.pydata.org/)

● We like Numba because it has worked well for 
JIT-compiling code for a CPU

● Unlike CPU Numba, CUDA Numba doesn’t allow 
most NumPy (which is a problem for scientific users 
like DESI)

● Numba for GPUs doesn’t look very much like 
“normal” Python, looks a lot more like CUDA

 

https://numba.pydata.org/


legval in Numba for GPU (in progress!) 

Step 1: Invoke kernel with thread information
Step 2: Numba gpu function

Step 3: Troubleshoot Numba type errors! 
(Common)

Step 4: Profit!



A working cuda.jit example

● Screenshot from: 
https://numba.pydata.org/numba-doc/dev/cuda/exa
mples.html

 

https://numba.pydata.org/numba-doc/dev/cuda/examples.html
https://numba.pydata.org/numba-doc/dev/cuda/examples.html


Some words of caution

● Code that runs well on a CPU might not be good for 
a GPU

● More than just porting some kernels/functions, it 
could require a substantial rewrite

● How to avoid doing this every few years? How to be 
able to run on many architectures? 

● Unfortunately there are no easy answers



What have we learned?

● Python on GPUs is still evolving
● We have tried:

○ CuPy → difficulty easy, but not every NumPy/SciPy 
function

○ Numba → difficulty hard, looks less like Python, but 
more flexible

● Our job is to help DESI and our users figure out the 
best strategy (performance + maintainability + 
portability)

● Stay tuned!



Thank you!


