
The NERSC Superfacility Project: A Technical Overview

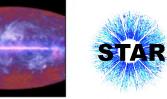
Cory Snavely Lead, NERSC Infrastructure Services Group

NERSC GPUs for Science Day 1 2019-07-02 Lawrence Berkeley National Laboratory

Describe the NERSC Superfacility Project

- Background from a Compute Facility Perspective
- Project Goals
- Science Engagements
- Technical Work Areas
- Example Outcome

NERSC supports a large number of users and projects from **DOE SC's experimental and observational facilities**

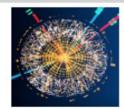


Palomar Transient Factory Supernova

Dayabay Neutrinos

Crvo-EM

Planck Satellite

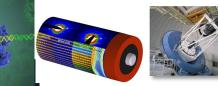

Background

Radiation

ALS

Light Source

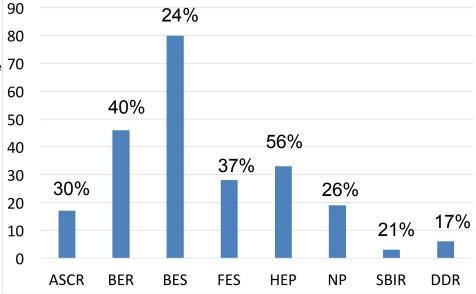
Star Particle Physics **Cosmic Microwave**



Atlas Large Hadron Collide 70

ICIS Light Source

Joint Genome Institute **Bioinformatics**


NCEM

DESI

I SST-DESC

17

of Projects Analyzing Experimental Data or Combining Modeling and Experimental Data by SC Office

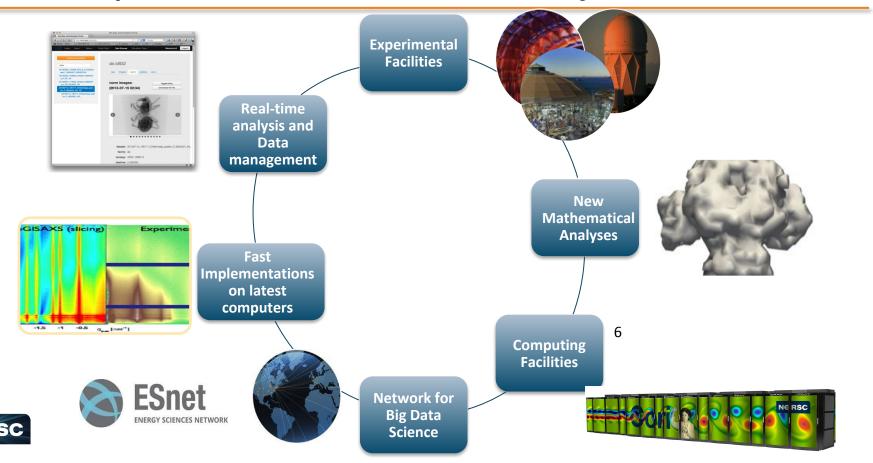


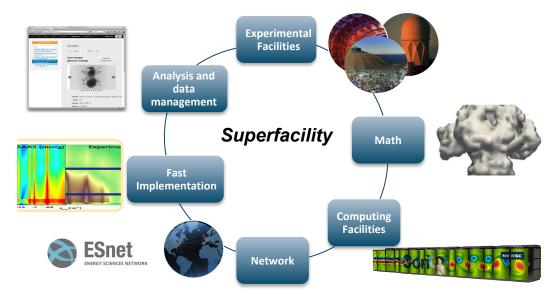
~35% (235) of ERCAP projects self identified as confirming the primary role of the project is to 1) analyze experimental data or; 2) create tools for experimental data analysis or; 3) combine experimental data with simulations and modeling

- Scalable methods for analysis and reduction of large datasets
- Large storage systems with high performance and intuitive interfaces
- Significant advances needed to search, publish, and share data
- Seamless data movement throughout workflow
- A co-evolution of capabilities between DOE experimental and ASCR facilities

Su-per-prefix. Placed over (as abstraction); transcending

// Superstructure, superimpose, supersymmetry

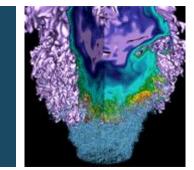

An *ecosystem* of connected facilities, tools, and expertise to enable new modes of discovery.

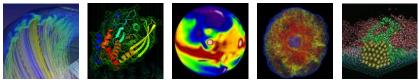

Superfacility: an ecosystem of connected facilities, software and expertise to enable new modes of discovery

What's the role of NERSC in a superfacility?

- Deploying large scale computing and storage resources
- Providing reusable building blocks for experimental scientists to build pipelines
- Providing scalable infrastructure to launch services
- Expertise on how to optimize pipelines

Superfacility Project Goals




- First and foremost, demonstrate **science impact**.
- Provide **building blocks** that **lay the groundwork and help do heavy lifting** for complex workflows.
- Engage with a **breadth of projects** to satisfy different use cases. Aim: **generalized, reusable** outcomes.
- Emphasis on **distributed workflows**.
- Coordinate existing efforts under a common rubric for maximum impact.
- Involve NERSC peer divisions: Computational Research, ESnet.

Science Engagements

Science Engagements

Just added!

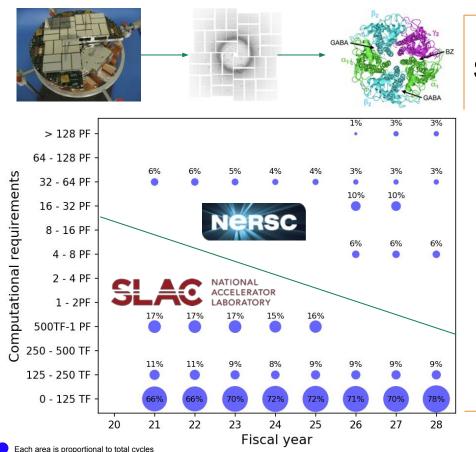
Next-generation dark matter detection.

High-rate detectors use NERSC for real-time experimental feedback, data processing/management, and comparison to simulation

Processing streaming alerts (from NCSA) for detection of supernova and transient gravitational lensing events

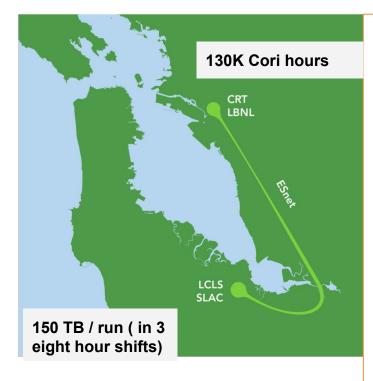
High-rate detectors use ESnet and NERSC for real-time experimental feedback and data processing

Nightly processing of galaxy spectra to inform next night's telescope targets



Complex multi-stage workflow to analyse response of soil microbes to climate change

4D STEM data streamed to NERSC, used to design ML algorithm for future deployment on FPGAs close to detector


LCLS / ESnet / NERSC Collaboration

Science Summary:

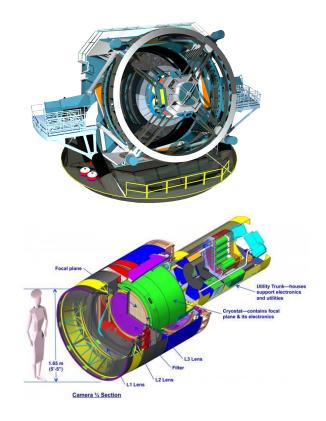
- Streams of diffractive images reconstruct molecular structure and motion.
- Using HPC to speed data analysis allows <u>on-shift</u> understanding of collected data.
- 20% of LCLS-II (2021-2028) experiments will require NERSC (dots above line)

LCLS / ESnet / NERSC Collaboration

Needs from NERSC:

- Spin for data transfer automation
 - Reserve space and nodes for data
- Cori for Data Analysis
 - LCLS uses 130K hours per experiment
 - LCLS-II will 100x data rates
 - NERSC's ability to provide scheduled compute intensity is critical to this project
- GPUs for algorithm advancement
- WAN Bandwidth
 - In cooperation with ESnet provide scheduled bandwidth to compute nodes.
 - Orchestrate NERSC and ESnet resources (SENSE, SDN, scheduling)

LSST Dark Energy Science Collaboration

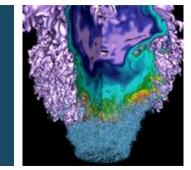

Science story

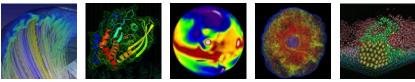
- Explain Dark Energy through multiple science probes: Galaxy catalogs, supernovae, lensing
- Survey covers the whole sky every few nights
- 3.2 Gpix camera built by DOE

Value proposition

Ability to co-locate and combine data w/compute:

- Simulations: Cosmology, instrument, detector
- Non-LSST Data: Other surveys for context
- Data analysis (HPC) and Sharing (Globus, Spin)


LSST Dark Energy Science Collaboration



Needs from NERSC:

- Spin for Supernova broker
 - Nightly streaming data 27 MB/s,
- Cori for Simulations
 - 138M MPP hours in 2019 (increasing annually), 3 month scale turnaround
 - NESAP support
 - 1.2PB project storage purchased, additional 1PB in FY19
- Jupyter for analysis
 - Hundreds of scientists accessing notebooks

Technical Work Areas

• Accommodate real-time jobs at significant scale

- Reservations made via API
- Checkpointing (requires support in codes)
- Preemption
- Queues / incentives
- SchedMD collaboration

- Greater general availability
- Machine-actionable alerts of service degradation

- Rolling upgrades
- Redundancy at minimally sufficient scale
- Build on the concept of "storage reservation"
- API-accessible center status

Quantify impact of scheduling changes

- Companion research project in LBNL Computational Research Division
- Baseline simulation with real test runs

• Provision capacity / connectivity on demand

Tools/Techniques:

Companion efforts in ESnet / SENSE Project

• Offload data movement between tiers (campaign, scratch, archive)

- Research and implement parallel data mover
- GPFS/HPSS Integration (GHI)

Data Dashboard

Objectives:

- Visualize storage usage
- Simplify management tasks ("archive this large directory")

Tools/Techniques:

• Data analysis using metadata from nightly scans

• Simplify deployment of science gateways, workflow managers, databases, etc using containers

- Docker
- Compose (moving to Kubernetes)
- Rancher

• Comprehensive API endpoints for all of the above

- Kong frontend
- Backend workers
- Related: AWS, NERSC NEWT (legacy), TACC Agave

- Share identities across facilities and services
- Simplify authentication, especially for distributed workflows

- OpenID Connect, OAuth 2.0, SAML
- JSON Web Tokens

Intersections

	Advanced Scheduling	Resiliency	Scheduling Simulator	Nas	Data Movement	Data Dashboard	Spin	API into NERSC	Federated Identity
ALS	 ✓ 	\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark		\checkmark
DESI	\checkmark	\checkmark	V		V	\checkmark	\checkmark		
FICUS	\checkmark	V	V		V	\checkmark	V		\checkmark
LCLS	\checkmark		V	\checkmark				 ✓ 	✓
LSST- DESC	~		V	\checkmark	~		V	×	~
NCEM	V		V	V					

Bottom-up / Top-down Planning

Novel workflows, facility and instrument upgrades present new challenges.

Engagement with a variety of projects ensures generalized solutions.

Example Science Goal

• LCLS will test runs at NERSC this year to prepare for upgrading to LCLS-II in 2020.

- Currently requires many humans in the loop.
 - NERSC staff to monitor and update compute reservation
 - ESnet and Network staff at SLAC/NERSC monitor data flows
- Aim: simplify and automate the process.

Example Science Goal

- Use case: LCLS uses NERSC for a bursty experiment
 - Use API to make compute reservation and plumb SDN
 - During run, use SDN to transfer data from experiment to compute nodes
 - Launch and monitor compute jobs via a Jupyter notebook
 - Results are automatically archived
 - Checkpointed code runs during reservation, using idle nodes
 - Monitor the impact of the reservation on NERSC workload as a data point for the simulator

Measured impact

Smoother

for user

Project is Underway

- Kicked off in December 2018
- Three-year project
- Developing milestones at six-month intervals

Possible Future Directions

- Multiple compute facilities for resiliency?
- Data mirroring / migration?
- Workflow manager integration?

Thank You

