
© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Composer XE 2013 SP1

Getting Started

Xeon Phi edition
Fall 2013

1

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Agenda
New User to Intel Compilers

What is Xeon Phi

Compiling for Xeon phi

Vectorize your code

Tips and tricks

2

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

What is Xeon Phi

The Intel® Xeon Phi™ Coprocessor has up to 61 in-
order Intel® MIC Architecture processor cores
running at
1GHz (up to 1.3GHz).

The Intel® MIC Architecture is based on the x86
ISA, extended with 64-bit addressing and
new 512-bit wide SIMD vector instructions and
registers.

Each core supports 4 hardware threads

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Why Use Intel Compilers?
Compatibility

Platforms: Source and binary compatible with
Visual C++ 2008/2010/2012/2013 on Windows*
gcc 4.1 ~ gcc 4.8on Linux*
Xcode* 4.6 or 5.0 on OS X*

ANSI C/C++ and OpenMP* compliance:
ISO/IEC 9899:1990 for C language
ISO/IEC 9899:1999 for C99
C++ ISO/IEC 14882:2011 for C++11
Partial support of OpenMP* 4.0

Performance
Industry leading optimization technologies: auto-vectorization, PGO, IPO,

processor targeting optimization
Outstanding performance on Intel® architecture processors
Performance libraries: Intel® IPP, Intel® MKL and Intel® TBB

Support
World class support with secure, web-based, engineer-to-engineer support

through Intel Premier Support
Community based forum support from technical experts around the world

4

	

	

	

	

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Why Use Intel® Compilers?

Numerous tools to enable parallelism
Vector Parallelism

Automatic Vectorization
Vector statements (Intel® Cilk Plus)
Lower level SIMD (pragmas, intrinsic functions)

Task Parallelism
Language extensions (Intel® Cilk Plus)
C++ Task Libraries (Intel® TBB)
Automatic Parallelism
GAP – let the compiler help you restructure code for

more parallelism opportunities
Multi-threaded Performance Libraries – Intel® MKL, Intel®
IPP

10/24/
13

5

Parallelism

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Why Use Intel® Compilers?

Our goal is performance
Performance to be gained in a variety of ways:

The future is Multi-core (and the future is now!)
New instructions enable new opportunities (SSE, AVX, AVX2)
Micro architectural improvements

Intel Compilers Support the latest Features
Be on the cutting edge of new performance features

Latest Instructions
Code generation tuned for latest microarchitecture

Highly Optimized libraries
MKL – Math functions (BLAS, FFT, LAPACK, &c)
IPP – (compression, video encoding, image processing &c)

10/24/
13

6

Performance

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Linux: Basic Compiler Usage
source <installdir>/bin/[compilervars.sh | compilervars.csh]
[intel64 | ia32]

Sets environment vars for compiler, libraries, headers,
etc.

Compiler drivers are ‘ifort’, ‘icc’ for C, and ‘icpc’ for C++
“-O” switches compatible, but not identical to gcc

-O2 default optimization level (gcc default is –O0)
-O* doesn’t imply the same set of opts for gcc and Intel,

but similar concepts, -O0 for debugging, -O2 for
default, -O3 for more advanced optimizations

icc –help, icpc -help or ifort -help provides extensive list
Intel debugger IDB or Intel-provided GDB (extended)

Linux: ‘idbc’ command line, ‘idb’ X11 GUI

10/24/
13

7

Optimization Notice

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Native Mode
Easiest to start
Add the –mmic flag to the compiler

•  Offload
No need for any extra flags
Specify sections of code to be run
on Xeon Phi through pragmas

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Native Mode
icpc -mmic -vec-report3 -openmp
omp_native.cpp

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Native Mode
Copy compiled binary over to Xeon
Phi
sudo scp a.out mic0:/tmp

Copy over libiomp5.so as well
sudo scp /opt/intel/lib/mic/
libiomp5.so mic0:/tmp

sudo ssh mic0

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Native Mode
Run a.out
Fails because it can’t find the openmp library

export LD_LIBRARY_PATH=/tmp

Depending on what libraries you use
you will need to copy those into your
path as well.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Offload mode
Useful for complex applications
where you only need heavy compute
during certain times.

Can control what gets run on the
coprocessor.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Offload mode
icpc –openmp –O3 –xhost
offload.cpp

No need copy over files to the
coprocessor.

Runs on host.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Compiling for Xeon Phi

•  Offload mode
#pragma offload target(mic){
/* code in here runs on xeon phi
It will run on the host if there is no
coprocessor available
*/
}

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Profiling
Function level and/or Loop-level

10/24/13 15

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Function and Loop Profiler
Identify Time Consuming Functions and Loops

Compiler switch:
-profile-functions /Qprofile-functions,
Insert instrumentation calls on function entry and
exit points to collect the cycles spent within the
function.
Compiler switch:
-profile-loops= <inner|outer|all>
/Qprofile-loops=<inner|outer|all>

Insert instrumentation calls for function entry and exit points as well as the
instrumentation before and after instrument able loops of the type listed as
the option’s argument.

Loop Profiler switches trigger generation of text
(.dump) and XML (.xml) output files

Invocation of XML on command line:
java -jar loopprofviewer.jar <xml
datafile>

16

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Loop Profiler Text Dump (.dump file)

17

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Loop Profiler Data Viewer GUI

18

Function Profile View

Loop Profile View

Column headers allow selection
to control sort criteria

independently for function and
loop table

Menu to allow user to enable
filtering or displaying the

source code

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Vector Report

Want to know if the compiler
vectorized your code the vector
report will tell you

Adding –vec-report[n] will give you
output from compiler.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Vector Report

Compiler will not vectorize a loop if it
can’t be certain at compile time that
it is safe to do so.

•  #pragma simd
 is a way to assert to the compiler

that everything in the loop is safe to
vectorize. (DANGEROUS)

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Vector Report

 Let’s run the vector report on the offload
code and see if we can make it run faster.

Let’s change line 118 to #pragma simd
You will see that the compiler vectorized
the loop now

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Memory Alignment

 – Static memory
o Allocated by compiler/linker
o Add __attribute__((aligned(n))) in front of variable
declaration
o Applies to global/local static variables as well as stack/auto
variables
– Dynamic memory
o Allocated by language runtime
o Use __mm_aligned_malloc(size, alignment_bytes)
o Example: buf = (char*) _mm_malloc(bufsize, 4096);
o Pair it with __mm_aligned_free()

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Other hints from the compiler

•  -guide
 This flag combined with –parallel will give the user

feedback from the compiler which can also help you
parallelize your code.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

Linux: Documentation,
Samples, and Tutorials
HTML- and PDF-based documentation:

<install dir>/composerxe/Documentation/en_US/
Release_Notes[F | C].pdf
documentation_[f | c].htm

Samples:
<installdir>/Samples/en_US/[C++ | Fortran]/sample.htm

Vectorization, openmp, PGO, IPO, GAP, Coarray
Fortran, Cilk Plus

Tutorials: <installdir>/composerxe/Documentation/en_US/!
/tutorials_[c | f]/index.htm
Tutorials are based on the Samples included
Steps user through new technologies

10/24/13	
 28

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

© 2013, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or
other countries. *Other names and brands may be claimed as the property of others.

OpenMP 4.0* support
•  TEAMS pragmas, directives and clauses

•  DISTRIBUTE pragmas, directive and clauses

•  SIMD pragmas, directives, and clauses

•  TARGET pragmas, directives and clauses for attached coprocessors (or devices)

•  #pragma omp taskgroup construct

•  Atomic clause seq_cst

•  Six new forms of atomic capture and update:
–  o Atomic swap: {v = x; x = expr;}
–  o Atomic update: x = expr binop x;
–  o Atomic capture 1: v = x = x binop expr;
–  o Atomic capture 2: v =x = expr binop x;
–  o Atomic capture 3: {x = expr binop x; v = x;}
–  o Atomic capture 4: {v = x; x = expr binop x;}

•  proc_bind(<type>) clause where <type> is “spread”, “close”, or “master”

•  OMP_PLACES environment variable

•  OMP_PROC_BIND environment variable

•  omp_get_proc_bind() API

32	

	

	

	

	

