
1

Benchmark Performance of
Different Compilers on a Cray XE6

Mike Stewart and Helen He
NERSC User Services Group

May 23-26, CUG 2011

2

Outline

•  Introduction
•  Available Compilers on Hopper
•  Recommended Compiler Options
•  Benchmarks Used in the study
•  Performance Results from Each Compiler
•  Summary and Recommendations

3

Hopper

•  Cray XE6, 6,384 nodes, 153,126 cores.
•  Each node has 2 twelve-core AMD MagnyCours 2.1 GHz procs.
•  1.28 Pflops/peak, 212 TB memory.

4

Available Compilers on Hopper

•  Portland Group Compilers
–  This is the default compiler on Hopper

•  Pathscale Compilers
–  % module swap PrgEnv-pgi PrgEnv-pathscale

•  Cray Compilers
–  % module swap PrgEnv-pgi PrgEnv-cray

•  GNU Compilers
–  % module swap PrgEnv-pgi PrgEnv-gnu

5

Compile Codes on Hopper

•  Cross compilation from login nodes to build
executables to run on the compute nodes.

•  To use a particular compiler, first swap to the
corresponding PrgEnv.

•  Then use compiler wrappers:
–  ftn for Fortran codes
–  cc for C codes
–  CC for C++ codes

•  The wrappers can find the proper system and MPI
libraries.

6

Compiler Flags Comparison

PGI Pathscale Cray GNU Explanation

-fast -Ofast -O3 -O3 High level
optimization

-mp=nonuma -mp -h omp
(default)

-fopenmp Enable
OpenMP

-byteswapio -byteswapio -h byteswapio -fconvert=swap Read files in
big-endian

-Mfixed -fixedform -f fixed -ffixed-form Fixed form
source

-Mfree -freeform -f free -ffree-form Free form
source

-V -dumpversion -V --version Show
version info

not
implemented

-zerouv -e 0 -finit-local-zero Zero fill
uninitialized
values

7

Recommended Options:
PGI Compiler

•  NERSC recommends:
  -fast or –fastsse

•  PGI User Documentation:
 “-fast –Mipa=fast” is a good set of options.

•  Cray recommends:
 -fast –Mipa=fast
 If can be flexible with precision, also try

–Mfpreleaxed.

8

Recommended Options:
Pathscale Compiler

•  NERSC recommends:
  -Ofast

•  Pathscale User Documentation:
 Start with –O2, then –O3,
 then –O3 –OPT:Ofast, then -Ofast.

•  Cray recommends:
 -Ofast

9

Recommended Options:
Cray Compiler

•  NERSC recommends:
  -O3

•  Cray recommends:
 Use default –O2, which is equivalent to –O3 or

–fast in other compilers.
 Use –O3,fp3 (or –O3 –hfp3)

 -O3 only slightly better than –O2
 -hfp3 gives maximum freedom in floating point

optimization, may not conform to IEEE standard.

10

Recommended Options:
GNU Compiler

•  NERSC recommends:
  -O3

•  Cray recommends:
 -O3 –ffast-math –funroll-loops

 -ffast-math: may not conform IEEE standard

11

NERSC6 Application Benchmarks

Benchmark Science Algorithm Concurrency Language

GTC Fusion PIC, finite
difference

2048 (waeking
scaling)

F90

IMPACT-T Accelerator
Physics

PIC, FFT 1024 (strong
scaling)

F90

MAESTRO Astrophysics Block
structured-grid
multiphysics

2048 (weak
scaling)

F90

MILC Lattice
Gauge
Physics
(QCD)

Conjugate
gradient,
sparse matrix,
FFT

1024 (weak
scaling)

C, Assembly

PARATEC Material
Science

DFT, FFT,
BLAS

1024 (string
scaling)

F90

12

NPB 3.3 Benchmarks

Benchmark Full Name Level Concurrency
BT Block Tridiagonal D 256
CG Conjugate Gradient E 256
EP Embarassingly Parallel E 256
FT Fast Fourier Transform D 256
LU Lower-Upper Symmetric

Gauss-Siedel
E 256

MG MultiGrid E 256
SP Scalar Pentadiagonal D 256

13

PGI Compiler Results

•  Other 3 options do not significantly improve performance
over “-fast”.

•  The NPB FT case D is an exception.

14

Pathscale Compiler Results

cxvxcbcb
•  -O2 performs worse than other 3 options.
•  -O3 optimizes almost all benchmarks well.
•  Extra options on top of –O3 do not improve significantly.

15

Cray Compiler Results

•  Only one benchmark with –Ofp3 shows significant
improvement over default –O2.

16

GNU Compiler Results

cxvxcbcb
•  -O3 generally gives a good level of optimization.
•  Worth to try –ffast-math option. Improves performance

significantly in some cases.

17

Overall Compilers Comparison

•  Pathscale fastest: 6 out of 12.
•  Cray fastest: 3 out of 12.
•  PGI fastest: 2 out of 12.
•  GNU fastest: 1 out of 12.
•  Mean against PGI: Cray 0.96, Pathscale 0 .94,

GNU 0.99

18

Summary and Recommendations

•  Users should experiment with different compilers and compiler
options to tune their application performance on Hopper.

•  On the average the Pathscale and Cray compilers produce
somewhat faster code on Hopper (or another Cray system),
since they are specifically designed for these processors. In
addition the Cray compilers make use of the Cray math libraries
at compile time to further optimize codes.

•  PGI compilers are available on a wide variety of platforms other
than Cray machines. Many existing codes have PGI targeted
Makefiles, could generate very good performance.

•  Using the gnu compilers allows you to compile on virtually
every Unix and Linux system. Although the performance on
Hopper for some codes with GNU compilers is quite good, there
is no guarantee for optimal performance on other platforms.

