

Al Science Application: Large-scale Transformer-based Weather Prediction

Jared D. Willard NERSC Postdoc in Data & AI Services Group

Peter Harrington^a, Shashank Subramanian^a, Ankur Mahesh^b, Travis A. O'Brien^c, William D. Collins^{b,d} ^aLBNL, NERSC ^bUC Berkeley, Department of Earth and Planetary Science ^cIndiana University,, Department of Earth and Atmospheric Sciences ^dLBNL, EESA

National Energy Research Scientific Computing Center

NERSC Data Day 2024

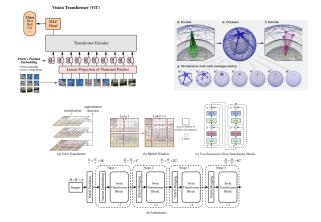
Rise in data-driven weather forecasting

Availability of large, high-quality, open, and free meteorological datasets (e.g. ERA5 Reanalysis)

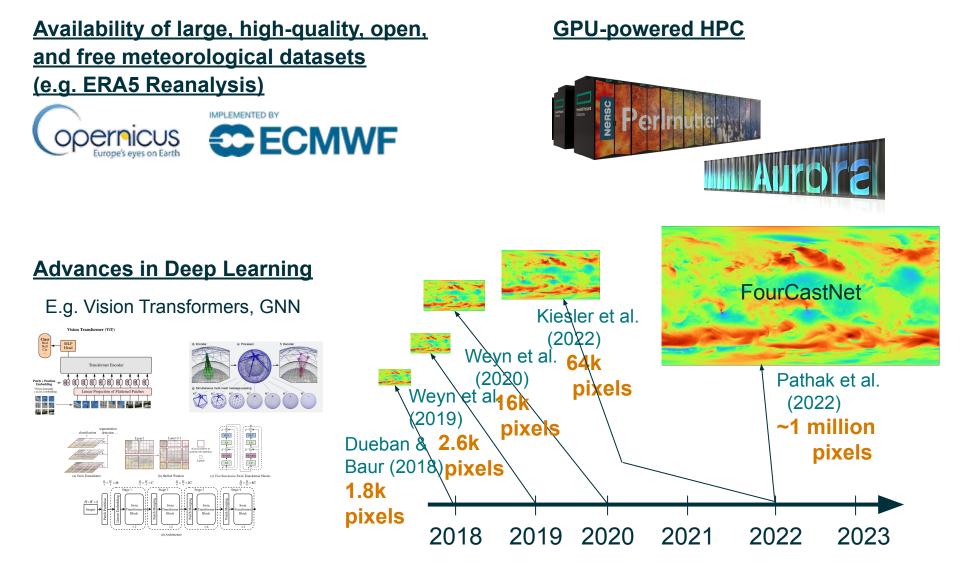
GPU-powered HPC

Advances in Deep Learning

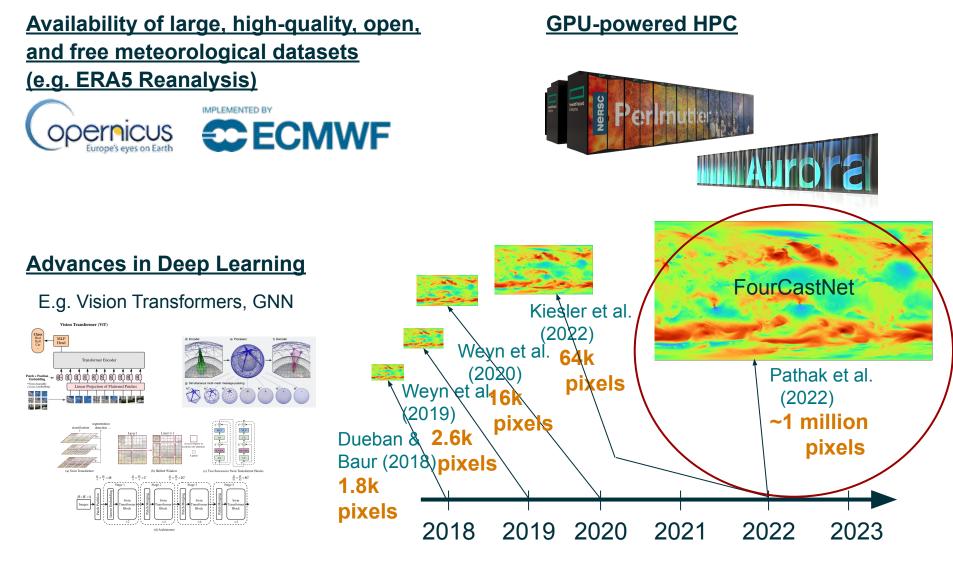
E.g. Vision Transformers, GNN



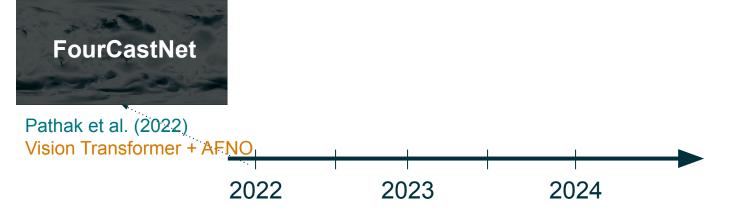
Rise in data-driven weather forecasting



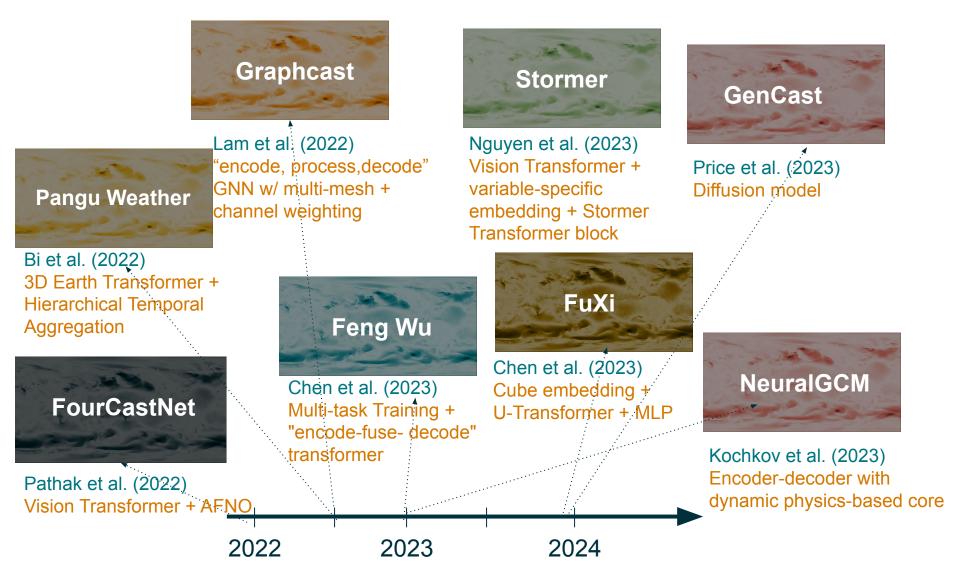
Rise in data-driven weather forecasting



Dilemma: Tons of Models and Deep Learning Techniques



Dilemma: Tons of Models and Deep Learning Techniques



Gap of studies comparing these different techniques

Need for ablation!

Types of Choices

Base Architecture

Vision Transformer

Graph Neural Network

Swin Transformer

:

Architectural Modifications

Spherical Fourier Neural Operator

Weather-specific embedding layer

Physics-based Core

Training Techinques

Multi-step fine-tuning Multi-task loss function Randomized Forecast Interaval Hierarchical Temporal

Aggregation

Initial Study

 Nguyen et al. (2023) attempt initial ablations, though at coarser resolution (~1.41°) using "Stormer" model

Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

Tung Nguyen¹, Rohan Shah^{1,2}, Hritik Bansal¹, Troy Arcomano³, Romit Maulik^{3,4}, Veerabhadra Kotamarthi³, Ian Foster³, Sandeep Madireddy³, and Aditya Grover¹ ¹UCLA, ²CMU, ³Argonne National Laboratory, ⁴Penn State University

2023-12-8

Research Objectives:

Showcase off-the-shelf model performance

Channels Input (time=t) U = 0

Swin v2 Transformer

- Parameterized for moderate compute budget (0.5-2 days on 16 A100 GPU nodes)
- Showcase superior performance relative to ECMWF's Integrated Forecasting System (IFS)

Perform ablations using techniques from recently published literature:

Key Ablations

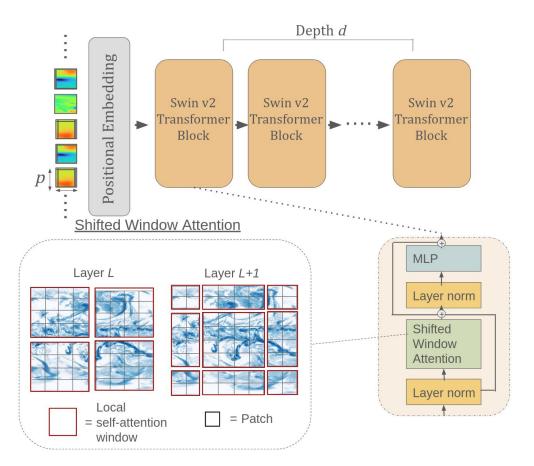
- Graphcast-inspired channel weighting and invariants
- Multi-step fine-tuning used in FourCastNet and Graphcast
- Variable tokenization and aggregation layer from the Stormer model study
- Multi-task learning loss function from the Feng Wu

Using large-scale high resolution data (ERA5)

Baseline Model: Swin v2 Transformer

Using an off-the-shelf model for autoregressive prediction

- Main idea
 - Shifting window partitioning scheme for computing self-attention
- Benefits
 - Scalability and efficiency being applied to high resolution prediction
 - Comparable performance to other more complicated or experimental architectures



Dataset: ERA5 Reanalysis

- <u>ERA5 73 channel</u> reanalysis dataset
 - Data from 1979 2018
 - Train: 1979-2015
 - Validate: 2016-2017
 - Test: 2018
 - 0.25° x 0.25° resolution
 - 6 hr timestep
 - Regridded to 2D field of shape (721 × 1440)



- Storage Details
 - HDF5 files for fast performance
 - ~20 Terabytes on Scratch

0.4

10

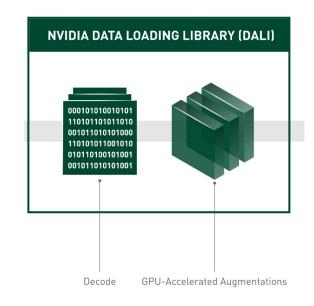
Computing Details

Efficient, Scalable

- Pytorch shifter container
- Trained on 64 GPUs using data parallelism
- Training time less than a day
- DALI data loader for overlapped IO and compute
- Experiment tracking and visualization with Weights & Biases

W&B

O PyTorch



developer.nvidia.com/dali

Evaluation: Earth-2 Model Intercomparison Project

- Python library from Nvidia
- Scores averaged over 11
 initial lead times evenly
 spaced throughout 2018
 and forecasts are rolled out
 7 days at 6 hour intervals.

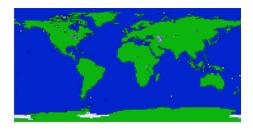
Earth-2 Model Intercomparison Project (MIP) is a python framework that enables climate researchers and scientists to explore and experiment with...

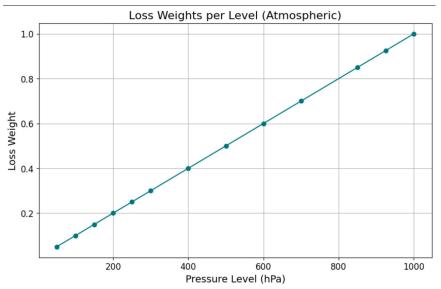
AX 8	⊙ 15	炅 2	☆ 94	ሄ 28	0
Contributors	Issues	Discussions	Stars	Forks	

Ablation #1: Graphcast-inspired channel weighting + invariants

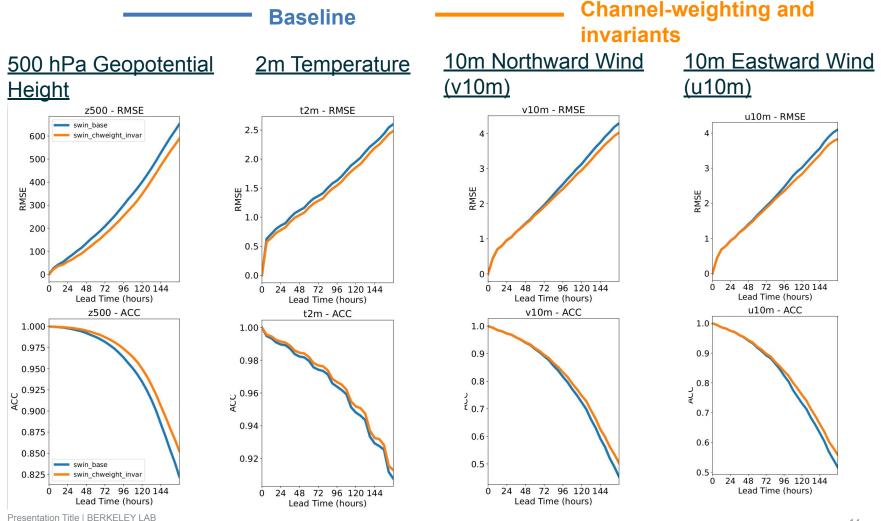
Surface importance and additional static information

- Includes 2 "static" inputs
 - 1. Orography (surface geopotential)
 - 2. Land-sea mask
- Weights prioritize weather variables closer to the surface
 - Also used in "Stormer" paper (Nguyen et al. (2022))

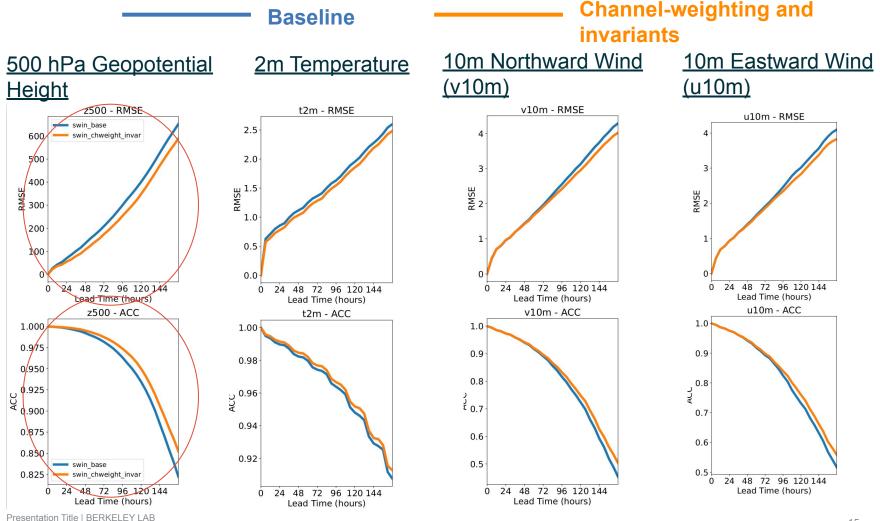




Ablation #1: Results for channel weighting + invariants



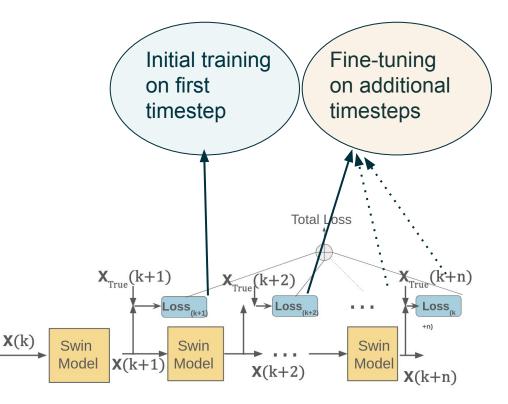
Ablation #1: Results for channel weighting + invariants



Ablation #2: Multi-step fine-tuning

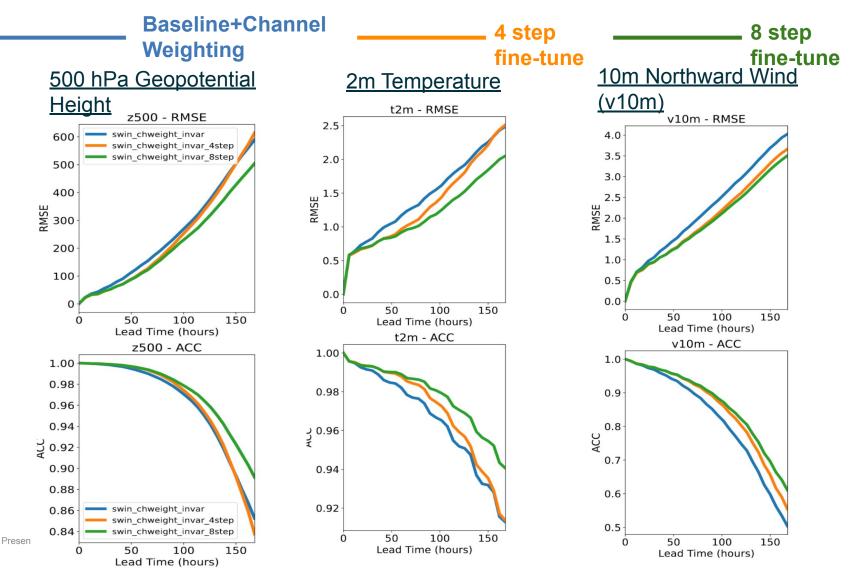
Improved Performance and Rollout Stability

- Pioneered by FourCastNet and used in many newer models
- Addresses possible drawback of autoregressive models of rapid error accumulation



6 hour timesteps

Results of multi-step fine tuning



Issues with multi-step fine-tuning

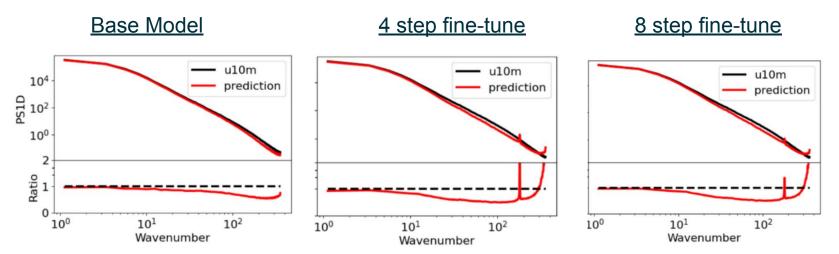
- Blurriness, poor fine-scale detail
- Especially problematic in ensemble context for numerical weather prediction (Brenowitz et al. (2024)

Issues with multi-step fine-tuning

- Blurriness, poor fine-scale detail
- Especially problematic in ensemble context for numerical weather prediction (Brenowitz et al. (2024))

Do we see blurriness in our models?

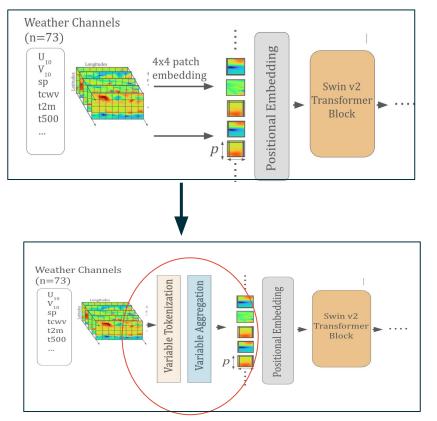
Can examine spectra!



Unsuccessful Ablations

Weather-specific embedding layer

(Nguyen et al. (2023))



Effects:

- Minimal improvements at the cost of large computational expense and memory footprint
- Infeasible for high resolution, aggregation done sequentially due to high memory pressure from the cross-attention

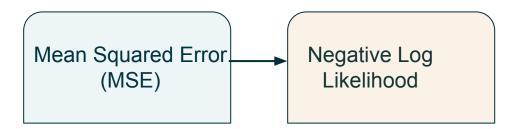
Unsuccessful Ablations

Uncertainty-based Multi-task Loss Function (Chen et al. (2023))

New Prediction Capability

$$(\hat{\mu}^{k+1}, \hat{\sigma}^{k+1}) = \operatorname{Swin}(\mathcal{X}^k)$$

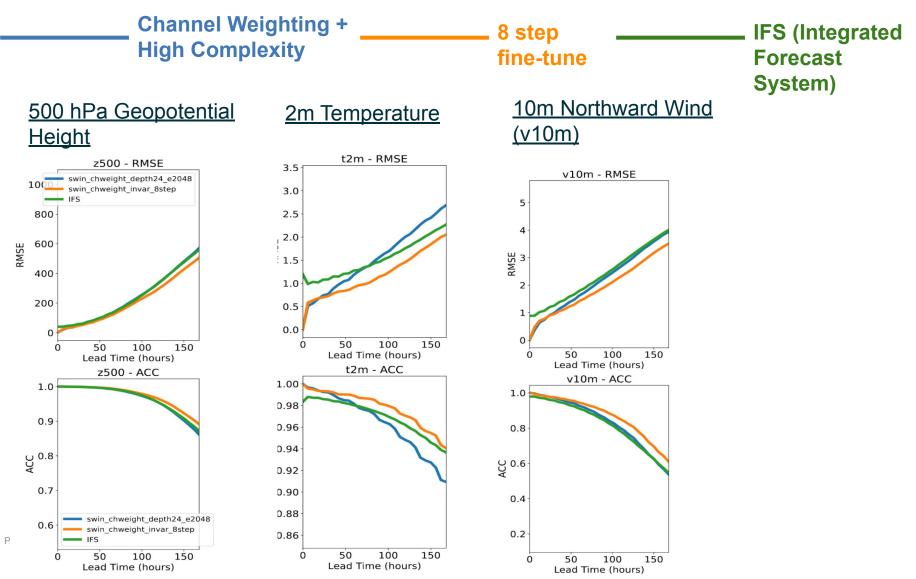
Loss Function Change



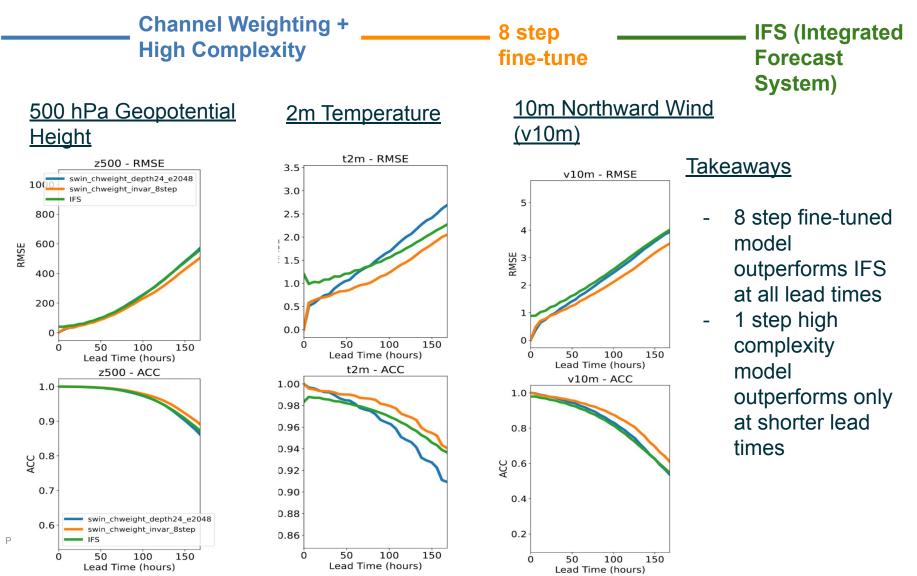
Effects:

- Consistently decreased performance in the validation alongside increased blurring.
- Continued even when model complexity was increased.

Comparing best models with IFS



Comparing best models with IFS



Conclusions

Off-the-shelf models do very well!

- We demonstrate that an off-the-shelf SwinV2 Transformer model can surpass the Integrated Forecasting System's (IFS) performance with minimal modification.
 - Training on < 1% of perlmutter for less than a day, ~10,000x speedup compared to operational numerical weather prediction.
- Of the ablations tested, the channel weighting was effective for single-step prediction compared to the baseline whereas the uncertainty loss and variable aggregation strategies did not help.
- Though multi-step fine tuning helps significantly in rollout RMSE, it still exhibits blurring effects in important fields like u10m/v10m for this resolution and model architecture. This shows the tradeoff between better RMSE and the loss of high frequency information.

Thank you!