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Rise in data-driven weather forecasting

2

Availability of large, high-quality, open,
and free meteorological datasets 
(e.g. ERA5 Reanalysis)

GPU-powered HPC

Advances in Deep Learning
E.g. Vision Transformers, GNN
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Dilemma: Tons of Models and Deep Learning Techniques
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2022 2023 2024

Pathak et al. (2022)
Vision Transformer + AFNO

FourCastNet
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Dilemma: Tons of Models and Deep Learning Techniques
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2022 2023 2024

Pathak et al. (2022)
Vision Transformer + AFNO

FourCastNet
Chen et al. (2023)
Multi-task Training + 
"encode-fuse- decode" 
transformer 

Feng Wu

Pangu Weather

Bi et al. (2022)
3D Earth Transformer + 
Hierarchical Temporal 
Aggregation

Graphcast

Lam et al. (2022)
“encode, process,decode” 
GNN w/ multi-mesh + 
channel weighting

Stormer

Nguyen et al. (2023)
Vision Transformer + 
variable-specific 
embedding + Stormer 
Transformer block

GenCast

Price et al. (2023)
Diffusion model

FuXi

Chen et al. (2023)
Cube embedding + 
U-Transformer + MLP

NeuralGCM

Kochkov et al. (2023)
Encoder-decoder with 
dynamic physics-based core



Presentation Title | BERKELEY LAB

Gap of studies comparing these different techniques

• Initial Study

– Nguyen et al. (2023) attempt initial 
ablations, though at coarser resolution 
(~1.41°) using “Stormer” model
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Need for ablation!

Base Architecture

Types of Choices

Architectural Modifications

Vision Transformer

Graph Neural Network

Swin Transformer

Training Techinques

Spherical Fourier Neural 
Operator

Weather-specific 
embedding layer

Multi-task loss function

Multi-step fine-tuning

Randomized Forecast 
Interaval 
Hierarchical Temporal 
AggregationPhysics-based Core⋮

⋮ ⋮
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Research Objectives: 
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Showcase off-the-shelf model 
performance

Perform ablations using techniques 
from recently published literature: 

Swin v2 Transformer Key Ablations
● Graphcast-inspired channel 

weighting and invariants
● Multi-step fine-tuning used in 

FourCastNet and Graphcast
● Variable tokenization and 

aggregation layer from the 
Stormer model study

● Multi-task learning loss 
function from the Feng Wu

Using 
large-scale high 
resolution data 
(ERA5) 

- Parameterized for 
moderate compute budget 
(0.5-2 days on 16 A100 
GPU nodes) 

- Showcase superior 
performance relative to 
ECMWF’s Integrated 
Forecasting System (IFS)
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Baseline Model: Swin v2 Transformer

• Main idea

– Shifting window partitioning 
scheme for computing 
self-attention

• Benefits

– Scalability and efficiency being 
applied to high resolution 
prediction

– Comparable performance to 
other more complicated or 
experimental architectures
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Using an off-the-shelf model for autoregressive prediction
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Dataset: ERA5 Reanalysis 

10

10

• ERA5 73 channel  
reanalysis dataset
– Data from 1979 - 2018

• Train: 1979-2015
• Validate: 2016-2017
• Test: 2018 

– 0.25° x 0.25° resolution

– 6 hr timestep

– Regridded to 2D field of 
shape (721 × 1440)

• Storage Details
– HDF5 files for fast 

performance

– ~20 Terabytes on 
Scratch
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Computing Details

•Pytorch shifter container

•Trained on 64 GPUs using data parallelism

– Training time less than a day
• DALI data loader for overlapped IO and 

compute

• Experiment tracking and visualization with 
Weights & Biases
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Efficient, Scalable

developer.nvidia.com/dali
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Evaluation: Earth-2 Model Intercomparison Project 
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12

• Python library from Nvidia

• Scores averaged over 11 
initial lead times evenly 
spaced throughout 2018 
and forecasts are rolled out 
7 days at 6 hour intervals.



Presentation Title | BERKELEY LAB

Ablation #1: Graphcast-inspired channel weighting + 
invariants

• Includes 2 “static” inputs

– 1. Orography (surface 
geopotential) 

– 2. Land-sea mask 

• Weights prioritize weather variables 
closer to the surface

– Also used in “Stormer” paper 
(Nguyen et al. (2022))

13

Surface importance and additional static information
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Ablation #1: Results for channel weighting + invariants
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Forecast skill up to 7 days

500 hPa Geopotential 
Height

2m Temperature

Baseline Channel-weighting and 
invariants

10m Northward Wind 
(v10m) 

10m Eastward Wind
(u10m) 
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Ablation #1: Results for channel weighting + invariants
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Ablation #2: Multi-step fine-tuning

• Pioneered by FourCastNet and 
used in many newer models

• Addresses possible drawback of 
autoregressive models of rapid 
error accumulation 

Improved Performance and Rollout Stability

Initial training 
on first 
timestep

Fine-tuning 
on additional 
timesteps

2 Stage Training

6 hour timesteps
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Results of multi-step fine tuning

500 hPa Geopotential 
Height

Forecast skill up to 7 days
Baseline+Channel 
Weighting

4 step 
fine-tune

8 step 
fine-tune

2m Temperature 10m Northward Wind 
(v10m) 
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Issues with multi-step fine-tuning

• Blurriness, poor fine-scale detail

• Especially problematic in ensemble context for numerical 
weather prediction (Brenowitz et al. (2024)
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Issues with multi-step fine-tuning

• Blurriness, poor fine-scale detail

• Especially problematic in ensemble context for numerical 
weather prediction (Brenowitz et al. (2024))

Do we see blurriness in our 
models?

Can examine spectra! 

Base Model 4 step fine-tune 8 step fine-tune
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Unsuccessful Ablations

Weather-specific embedding layer
(Nguyen et al. (2023))

Effects: 

● Minimal improvements at 
the cost of large 
computational expense 
and memory footprint

● Infeasible for high 
resolution, aggregation 
done sequentially due to 
high memory pressure 
from the cross-attention
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Unsuccessful Ablations

Uncertainty-based Multi-task Loss Function (Chen et al. (2023))

Loss Function Change

Mean Squared Error 
(MSE)

Negative Log 
Likelihood

New Prediction Capability Effects: 

● Consistently decreased 
performance in the 
validation alongside 
increased blurring.

● Continued even when 
model complexity was 
increased.
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Comparing best models with IFS
Forecast skill up to 7 days

Channel Weighting + 
High Complexity

8 step 
fine-tune

IFS (Integrated 
Forecast 
System)

2m Temperature 10m Northward Wind 
(v10m) 

500 hPa Geopotential 
Height
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Comparing best models with IFS
Forecast skill up to 7 days

Channel Weighting + 
High Complexity

8 step 
fine-tune

IFS (Integrated 
Forecast 
System)

2m Temperature 10m Northward Wind 
(v10m) 

500 hPa Geopotential 
Height

Takeaways

- 8 step fine-tuned 
model 
outperforms IFS 
at all lead times

- 1 step high 
complexity 
model 
outperforms only 
at shorter lead 
times
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Conclusions

• We demonstrate that an off-the-shelf SwinV2 Transformer model can surpass the 
Integrated Forecasting System’s (IFS) performance with minimal modification. 
– Training on < 1% of perlmutter for less than a day, ~10,000x speedup compared to 

operational numerical weather prediction. 

• Of the ablations tested, the channel weighting was effective for single-step prediction 
compared to the baseline whereas the uncertainty loss and variable aggregation 
strategies did not help.

• Though multi-step fine tuning helps significantly in rollout RMSE, it still exhibits blurring 
effects in important fields like u10m/v10m for this resolution and model architecture. 
This shows the tradeoff between better RMSE and the loss of high frequency 
information.  

24

Off-the-shelf models do very well!
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Thank you!
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