rfn}m

U.S. DEPARTMENT OF
“2/ENERGY

Office of Science

Al Science Application: Large-scale
Transformer-based
Weather Prediction

Jared D. Willard
NERSC Postdoc in Data & Al Services Group

Peter Harrington?, Shashank Subramanian?, Ankur Mahesh®, Travis A. O’Brien®,
William D. Collins®¢
aLBNL, NERSC
bUC Berkeley, Department of Earth and Planetary Science
‘Indiana University,, Department of Earth and Atmospheric Sciences
dLBNL, EESA

NERSC



Rise in data-driven weather forecasting

Availability of large, high-quality, open, GPU-powered HPC
and free meteorological datasets
(e.g. ERAS5 Reanalysis)
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Advances in Deep Learning

E. g Vision Transformers, GNN
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Dilemma: Tons of Models and Deep Learning Techniques

FourCastNet

Pathak et al. (2022)
Vision Transformer + AENQ, | | | | -
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Dilemma: Tons of Models and Deep Learning Techniques

m“

Lam et al; (2022) Nguyen et al. (2023)
“encode, process,decode” Vision Transformer + Price et al. ( 2023)
GNN w/ multi-mesh + variable-specific Diffusion model
channel weighting embedding + Stormer

: Transformer block

Bi et al. (2022)

3D Earth Transformer +

Hierarchical Tefnporal FuXi
Aggregation

Chen et al. (2023)

Pangu Weather

Chen et al. (2023) Cube embedding + NeuralGCM
FourCastNet |\/|u|tl task Tralnlng + U-Transformer +...'|\'/|LP )
“._ "encode-fuse- decode”
: ~fransformer Kochkov et al. (2023)
Pathak et al. (2'022) Encodgr-deco.der with
Vision Transformer + AFNO| L L i dynamic physics-based core
[ I I I
2022 2023 2024
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Gap of studies comparing these different techniques

Need for ablation!

Base Architecture

Vision Transformer

Types of Choices

Architectural Modifications

Graph Neural Network

Spherical Fourier Neural
Operator

Swin Transformer

e Initial Study

— Nguyen et al. (2023) attempt initial
ablations, though at coarser resolution
(~1.41°) using “Stormer” model
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Weather-specific
embedding layer

Physics-based Core

Training Techinques

Multi-step fine-tuning

Multi-task loss function

Randomized Forecast
Interaval

Hierarchical Temporal
Aggregation

2023-12-8

Scaling transformer neural networks for skillful

and reliable medium-range weather forecasting

Tung Nguyen!, Rohan Shah!-2, Hritik Bansal!, Troy Arcomano®, Romit Maulik®*, Veerabhadra
Kotamarthi?, lan Foster®, Sandeep Madireddy?®, and Aditya Grover!
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Research Objectives:

ﬁowcase off-the-shelf modﬁﬁform ablations using techniques
performance from recently published literature:

Swin v2 Transformer

aaaaa

=
=
= = - > > [
T =)
Pl | 5

- Parameterized for
moderate compute budget
(0.5-2 days on 16 A100
GPU nodes)

- Showcase superior
performance relative to

ECMWF'’s Integrated
\Forecasting System (IFS)

/\\ (ERAS5)
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Key Ablations

e Graphcast-inspired channel
weighting and invariants

e Multi-step fine-tuning used in
FourCastNet and Graphcast

e Variable tokenization and
aggregation layer from the
Stormer model study

e Multi-task learning loss
function from the Feng Wu

IMPLEMENTED BY
ERAS January 2016, Mean Sproad in Tomperature

Using
large-scale high /®
resolution data |




Baseline Model: Swin v2 Transformer

Using an off-the-shelf model for autoregressive prediction

Depth d
* Main i : | [
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scheme for Computing LIEJ » |Transformer| g |Transformer|y, . ... 4. [Transformer
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— Scalability and efficiency being ~ Shifted Window Attention Mhois ge
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: — o Window
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: Layer norm ;
Local ¥
= self-attention ] =Pateh -
window
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Dataset: ERAS Reanalysis

* ERA5 73 channel
reanalysis dataset

— Data from 1979 - 2018
* Train: 1979-2015
* Validate: 2016-2017
- Test: 2018
—0.25° x 0.25° resolution
— 6 hr timestep

— Regridded to 2D field of
shape (721 x 1440)
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& ECMWF C 1" Climate Change

Service

ERAS January 2016, Mean Spread in Temperature

» Storage Details

— HDF5 files for fast
performance

— ~20 Terabytes on 10
Scratch

10



Computing Details

Efficient, Scalable

*Pytorch shifter container
*Trained on 64 GPUs using data parallelism
— Training time less than a day

* DALI data loader for overlapped 10 and
compute

» Experiment tracking and visualization with

Weights & Biases
W&B
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Decode GPU-Accelerated Augmentations
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Evaluation: Earth-2 Model Intercomparison Project

* Python library from Nvidia .
NVIDIA/earth2amip &N

« Scores averaged over 11

e e . Earth-2 Model Intercomparison Project (MIP) is a NVIDIA.
|n|t|a| Iead t|meS evenly python framework that enables climate researchers
Spaced throughout 201 8 and scientists to explore and experiment with...
and forecasts are rolled out

_ A 8 ® 15 02 v 94 Y 28 O
7 days at 6 hour Intervals. Contributors Issues Discuss ions Stars Forks
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Ablation #1: Graphcast-inspired channel weighting +
invariants

Surface importance and additional static information

* Includes 2 “static” inputs

— 1. Orography (surface
geopotential)

— 2. Land-sea mask

* Weights prioritize weather variables Loss Weights per Level (Atmospheric)
closer to the surface

|
o
.

o
@
N

— Also used in “Stormer” paper
(Nguyen et al. (2022))

o
o
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Pressure Level (hPa)
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Ablation #1: Results for channel weighting + invariants

Forecast skill up to 7 days

Baseline _Chan_nel-weighting and
invariants

500 hPa Geopotential 2m Temperature ~ 10m Northward Wind 10m Eastward Wind
Height (v10m) (u10m)
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Ablation #1: Results for channel weighting + invariants

Forecast skill up to 7 days
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Ablation #2: Multi-step fine-tuning

Improved Performance and Rollout Stability

* Pioneered by FourCastNet and
used in many newer models

» Addresses possible drawback of
autoregressive models of rapid
error accumulation

X (k)
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2 Stage Training

Initial training
on first
timestep

Fine-tuning
on additional
timesteps

X (k+1)

True

\i

Swin
Model

V" -‘ ‘o.
2 B True :
+n)
o Swin . Swin
X(k+1)| Model Model
(k+1) X(k+2) X(k+n)

6 hour timesteps



Results of multi-step fine tuning

Forecast skill up to 7 days

Baseline+Channel

Presen
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Issues with multi-step fine-tuning

* Blurriness, poor fine-scale detail

 Especially problematic in ensemble context for numerical
weather prediction (Brenowitz et al. (2024)
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Issues with multi-step fine-tuning

* Blurriness, poor fine-scale detail

 Especially problematic in ensemble context for numerical
weather prediction (Brenowitz et al. (2024))

Do we see blurriness in our
models?

Can examine spectra!

Base Model 4 step fine-tune 8 step fine-tune

— ulOm
- prediction

— ul0m
= prediction

— ul0m
- prediction

10° 10! 102 100 10! 102 10° 10! 102
Wavenumber Wavenumber Wavenumber
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Unsuccessful Ablations

Weather-specific embedding layer

(Nguven et al. (2023))

Weather Channels
(n=73)

Effects:

1 B
Y
Variable Tokenization

y §
-
L "
ey

‘ Variable Aggregation ‘

‘ Positional Embedding ‘
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Weather Channels
(n=73)
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e Minimal improvements at
the cost of large
computational expense
and memory footprint

e Infeasible for high
resolution, aggregation
done sequentially due to
high memory pressure
from the cross-attention



Unsuccessful Ablations

Uncertainty-based Multi-task Loss Function (Chen et al. (2023))

Effects:

New Prediction Capability

(G rlani, k+1) _ SWiIl(Xk) e Consistently decreased
performance in the
validation alongside

Loss Function Change increased blurring.
e Continued even when
4 A 4 A model complexity was
Mean Squared Errorl | Negative Log increased.

(MSE) Likelihood
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Comparing best models with IFS

Forecast skill up to 7 days

Channel Weighting +

High Complexity
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Comparing best models with IFS

Forecast skill up to 7 days

Channel Weighting + 8 step IFS (Integrated

High Complexity fine-tune Forecast
System)

500 hPa Geopotential 2m Temperature 10m Northward Wind
Height (vi0Om)
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Conclusions

Off-the-shelf models do very well!

* We demonstrate that an off-the-shelf SwinV2 Transformer model can surpass the
Integrated Forecasting System’s (IFS) performance with minimal modification.
— Training on < 1% of perlmutter for less than a day, ~10,000x speedup compared to
operational numerical weather prediction.

» Of the ablations tested, the channel weighting was effective for single-step prediction
compared to the baseline whereas the uncertainty loss and variable aggregation
strategies did not help.

* Though multi-step fine tuning helps significantly in rollout RMSE, it still exhibits blurring
effects in important fields like u10m/v10m for this resolution and model architecture.
This shows the tradeoff between better RMSE and the loss of high frequency
information.
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Thank youl!



