
1

Choosing the right 
storage for your 
data

Steve Leak and Ravi Cheema
NERSC Storage Systems Group

Feb 21, 2024



2

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



3

I/O to $SCRATCH

• Short, fat path 
between 
computes and a 
big, fast, 
filesystem

• Supports parallel 
I/O (file locking)

• Short-term 
storage!



4

$SCRATCH 
• Big: 20TB soft quota, 30TB hard quota

o Over soft quota: job won't start
o Over hard quota: writes fail

• Fast: Highly parallel, all-flash, 6TB/s 
aggregate bandwidth

• Full POSIX: 
o File locking (for parallel I/O)
o MPI-IO
o ACLs

• Handles big and small files and I/O 
operations well
o input and output data
o config files and scripts
o compilation

• Not huge: full scientific datasets can 
be hundreds or thousands of TB - 
$SCRATCH is for I/O, not storage

• No backups: 
o Anything deleted (or purged) is 

gone
o In event of catastrophic disk 

crash, data may not be 
recoverable

• Subject to purging



5

$SCRATCH tips

• Optimize performance with striping
o https://docs.nersc.gov/performance/io/lustre/#nersc-file-striping-recommendations 
o Splits the file across multiple OSTs (disks)
o By default, data on 1 OST, ideal for small files and file-per-process IO
o Single shared-file I/O should be striped according to its size
o Helper scripts

stripe_small, stripe_medium, stripe_large
o Manually query with

lfs getstripe <path>
o Set striping on a directory

• New files will automatically pick it up
• Copy files in to inherit the striping

1. MPI-IO on Lustre: https://www.sys.r-ccs.riken.jp/ResearchTopics/fio/mpiio

https://docs.nersc.gov/performance/io/lustre/#nersc-file-striping-recommendations


6

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



7

Data on CFS

• Capacity-oriented 
filesystem, huge, 
robust

• Longer, indirect 
(via DVS) path to 
compute nodes
o DVS is not suited 

for I/O at scale 
(details shortly) 



8

CFS 
● Huge: Currently 114 PB, 33 PB more coming soon

○ Large block size: great for files >>1MB
● Robust: 

○ multiple layers of redundancy for reliability
○ daily snapshots retained for 7 days - if the 

file existed yesterday, you can recover from 
an accidental deletion

● Never purged, readily accessible
● Projects can split their space allocations between 

multiple directories and give separate working 
groups separate quotas 

● Full POSIX when directly mounted 
○ ie login nodes, DTNs (but not Perlmutter 

compute nodes)

• Configured for capacity over 
performance

o (Still pretty fast, but not 
$SCRATCH fast)

o Large block size - inefficient for 
small files, eg source code

• Not directly mounted on Perlmutter 
compute nodes 

o Mounted via an I/O forwarding 
service named DVS (more on that 
next), which imposes some 
constraints - not suitable for most 
job I/O

• Not backed up - make sure you have a 
copy of data, somewhere else



9

A bit about DVS

• DVS is an I/O forwarder developed by Cray
o DVS nodes mount the filesystem, and "project" it to compute 

nodes
• Designed to deliver file system contents at scale
• Long history of deployment at NERSC, went live on 

Perlmutter on June 8, 2023
• Used only for compute nodes, logins have a native client 

mount



10

DVS 
• Can provide filesystem access to 

thousands of nodes
• Decouples the filesystem from 

issues on Perlmutter
o Using DVS on Perlmutter has 

greatly improved system and 
filesystem stability 

• Not suitable for I/O at scale
o Though using a read-only 

mount point can alleviate this
• Does not fully support POSIX

o No file locking (shared-file 
writing via MPI-IO is not safe, 
HDF5 will complain and fail)

o ACLs disable caching
• chmod is fine
• setfacl will cause 

subsequent accesses to 
be very slow

o No mmap 



11

How DVS works

• Perlmutter has 24 gateway nodes that serve as DVS servers
• Each server can work 1000 I/O threads at once
• Can cache data to dramatically improve performance at large scales
• Two service modes:

o Read / Write (RW): gateway server is determined when file is 
created (hash of inode), stays constant, zero cache

o Read Only (RO): file can be served by all gateways, stays in cache 
for 30 seconds

• How to get the benefits (and avoid the limitations) of DVS:   
https://docs.nersc.gov/performance/io/dvs/#best-practices-for-dvs-performance-at-scale 

https://docs.nersc.gov/performance/io/dvs/#best-practices-for-dvs-performance-at-scale


12

DVS with read-write mount ($HOME, CFS)

• Eg: a 100-node job using conda 
environment in $HOME
o 12,800 processes all try to read 

/global/homes/e/elvis/.conda
o No cache, so it is fetched from 

the filesystem 12,800 times
o The DVS server that "owns" that 

file drowns under the load, while 
the processes wait in line 

o The job progresses only very 
slowly, and may fail (and other 
jobs using that server might be 
impacted too) 



13

DVS with read-only mount (/global/common)

• Eg: a 100-node job using conda 
environment in /global/common
o 12,800 processes are spread 

across 24 DVS servers
o /global/homes/e/elvis/.conda  

gets fetched once and cached
o The load on the DVS servers 

stays low
o The load on the filesystem stays 

low
o The job continues almost 

immediately

note that this y-axis goes 1/10 as high!



14

Read-only mount of CFS

• CFS also has a read-only mount point on 
Perlmutter: /dvs_ro/cfs/cdirs/ 
(the RW one is /global/cfs/cdirs)

• $SCRATCH is still faster .. BUT if your 
input data is:
o too big for $SCRATCH, and/or:
o used by multiple people in your 

project
• .. then you might benefit from reading it 

directly from /dvs_ro/cfs/cdirs



15

Sneak peek: Upgrades to CFS and NGF Storage Fabric

• We're working on updates to the 
storage network infrastructure, and to 
CFS
o More CFS cabinets = more 

capacity + more bandwidth
o More DVS servers = more 

bandwidth
o Faster network fabric 

Coming soon!



16

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



17

Software on 
/global/common
• Small block size, 

all-flash, mounted 
read-only on 
compute nodes 
(read-write on logins)

• Benefits from DVS 
caching, multiple 
DVS nodes



18

/global/common/software

• Especially good for python / conda environments!
conda create --prefix /global/common/software/myproject/myenv

https://docs.nersc.gov/development/languages/python/nersc-python/#moving-your-conda-setup-to-globalcommonsoftware 

• Python startup involves loading lots of modules, which involves looking 
in all of the directories in LD_LIBRARY_PATH - lots of disk access

• The read-only DVS mount of /global/common/software mitigates most 
of this

• Related tip:
o Don't load a conda environment at login! (via 

.bashrc/.bash_profile). It will be loaded for every Slurm job too.

https://docs.nersc.gov/development/languages/python/nersc-python/#moving-your-conda-setup-to-globalcommonsoftware


19

Software in containers

• NERSC supports Shifter and Podman (newer, solves some limitations of 
Shifter). Both provide similar functionality to Docker
o https://docs.nersc.gov/development/podman-hpc/overview/
o https://docs.nersc.gov/development/shifter/how-to-use/ 

• How do they help?
o Software is in the container - vastly reduces load on filesystem
o Also: consistent environment each run, even if Perlmutter software 

stack changes -> reproducibility benefits

Podman

Shifter

Python benchmark compared by filesystem or 
container, over increasing node count

https://docs.nersc.gov/development/podman-hpc/overview/
https://docs.nersc.gov/development/shifter/how-to-use/


20

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



21

HPSS - Tape-based Mass Storage 
• Tape! Reliable long-term storage
• Really huge - 300PB and growing
• Fast ingest (~ 50GB/s)

o Data first hits a spinning disk 
cache and gets migrated to 
tapes, cache is sized for 
several weeks of retention

• Tape! Retrieval can take a long time
o (Robot needs to fetch tape, insert 

into drive, scroll to where your data 
starts, then it can start reading)

• Not suitable for small files
o 100GB -> 2TB per file is best
o Use tar or htar to bundle files

https://docs.nersc.gov/filesystems/archive/#htar 

• Use HPSS for important data you are not actively using
• Retrieval order matters

o https://docs.nersc.gov/filesystems/archive/#order-large-retrievals 

https://docs.nersc.gov/filesystems/archive/#htar
https://docs.nersc.gov/filesystems/archive/#order-large-retrievals


22

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



23

$HOME 
• All-flash filesystem (fast access) 
• Small block size (good for small files - 

source code, scripts, etc)
• Backed up

o Daily snapshots
o e.g. my homedir is at 

/global/homes/e/elvis/.snapshots/2024-02-19

o (note: you can't see .snapshots with 
ls, but you can cd to it) 

o Also backed up to tape 
approximately monthly

• Not for large I/O (relatively lower 
bandwidth)

• Small - not intended for data 
storage

• Not suitable for running jobs against
• Avoid making your conda 

environments here, particularly if 
you will use them in compute jobs!



24

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



25

Globus for data 
movement
• Managed transfers 

(uses DTNs and 
login nodes)
o survives 

disconnect
• Multiple streams 

o higher bandwidth
https://docs.nersc.gov/services/globus/ 

https://docs.nersc.gov/services/globus/


26

TL; DR

• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source code)
• Put conda environments in /global/common/software (or better still, a 

container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and 

store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around (even within NERSC)
• Have an off-NERSC copy of everything important!



27

How to not lose data

• $SCRATCH
o For I/O, not storage! We actively purge older, not-recently-used data. Copy your results from 

$SCRATCH to, eg HPSS
• CFS

o For storage, not I/O. Nightly snapshots, kept 7 days ("accidental deletion protection"). Robust 
system, but not backed up - keep a second copy somewhere else

o https://docs.nersc.gov/policies/data-policy/policy/#community-file-system  
• $HOME

o For small-but-important things. Daily snapshots, monthly backups. No off-site backup - keep a 
copy of critical data at another site

• HPSS
o Tape - good place to store important data. We only keep a single copy - for critical data, make 

a second copy, either in HPSS or (better) offsite
o https://docs.nersc.gov/policies/data-policy/policy/#backup_4 

https://docs.nersc.gov/policies/data-policy/policy/#community-file-system
https://docs.nersc.gov/policies/data-policy/policy/#backup_4


28

Choosing the right storage for your data
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale over DVS
• CFS is best for actively-used data (but not source 

code)
• Put conda environments in /global/common/software 

(or better still, a container)
• Not using it for a while? Bundle it into big-ish 

(100GB->2TB) tar files and store on HPSS
• $HOME is good for scripts and source code
• Use Globus for moving large chunks of data around 

(even within NERSC)
• Have an off-NERSC copy of everything important!


