
Distributed Workflow Management
using JAWS

Daniela Cassol
dcassol@lbl.gov

JGI Computing Resources

4

JGI’s analysis workflow requirements span resources of different scales

• Managing multiple user accounts

• Different facilities have different policies
– Batch schedulers
– File system availability and data retention
– Run workflow in scrontabs it can be hard

• Different architectures
– CPU vs GPU
– Local disk vs parallel file systems
– Memory size and footprint

• Portability is a lot of work

5

Challenges
Distributed Computing is Hard

6

Challenges

Metagenome
Science
Program

Microbial
Genome
Science
Program

Microbial
Science
Program

Data Science
and

Informatics

DNA
Synthesis
Platform

Genome
Analysis

(Fungal/Micr
obial/Metage

nome)

Secondary
Metabolites

Science
Program

Synthetic
Science
Program

Fungal and
Algae

Science
Program

Plant
Program

Microbiome
Data Science

Program

Microbiome
Computational

Resource
Science
Program

JGI Internal Workflow Development

7

Challenges
JGI Internal Workflow Development

JGI artwork

● JGI Consists of many internal teams with
specialized expertise in particular domains

8

● JGI Consists of many internal teams with
specialized expertise in particular domains

● Each team may have their own software
development team, potentially spanning
decades of development

● Teams use a variety of workflow software
based on current developers' skills and
preferences

Dilemma: collection of workflows is hard to
maintain, often idiosyncratic to specific developer,
and may have dependencies that are no longer
supported as time goes on (Python 2.x?).
Organizationally this is poor use of resources.

Solution: We need to standardize workflows!
JGI artwork

Challenges
JGI Internal Workflow Development

● Developed a workflow manager called JGI Analysis
Workflow Service (JAWS) to run complex computational
workflows. JAWS provides support for distributed
computation across multiple HPC sites.

● Improves the reusability and robustness of bioinformatics
workflows in evolving and/or diverse high-performance computing
(HPC) and cloud environments.

● Uses Cromwell to execute workflows in a common Workflow
Description Language (WDL), standardizing the workflow
language.

● Provides a user-friendly common interface to seamlessly
route jobs and data across multiple sites.

9

JGI Analysis Workflow Service - JAWS

JAWS: Unifying Workflows Across JGI Groups

• Built using existing tools that
are well supported by
community - avoids “NIH”

• Simplifies user access to
distributed workflows

• Promotes reuse and
collaborative workflow
development

10

Standards based, User Friendly, Multisite Distributed

JGI Analysis Workflow Service - JAWS

JAWS: Write Once, Run anywhere

JGI staff analyze JGI
data on distributed
resources

Containerized workflow,
executable anywhere

Compute Cluster

Data

…Compute Cluster

Data Data

Compute Cluster

Data

Compute Cluster

Data

Compute Cluster

Unifying Workflow Execution Layer

JAWS: High Level Architecture

12

• JAWS Client: user-friendly command line interface with rich features
• JAWS Central: dispatches jobs to sites and tracks user history
• JAWS Site: extends Cromwell with additional features
• Cromwell: workflow execution engine
• HTCondor: flexible and efficient JAWS backend for SLURM

JAWS: Performance Metrics

13

JAWS Dashboard

7/23/18 14

Why WDL? Why Containers?

• BioWDL
– https://biowdl.github.io/
– Many complete pipelines, as well as reusable WDL tasks

for common CompBio analysis
• BioContainers

– https://biocontainers.pro/
– 9000+ applications for CompBio analysis

• Terra.bio
– https://terra.bio/
– Large cloud based workflow service provider that is based

on WDL, Docker containers and Cromwell

15

Widely supported, with active communities

https://biowdl.github.io/
https://biocontainers.pro/
https://terra.bio/

User case: Migrating from Legacy Workflows to WDL

• Task parallelism involves distributing tasks across independent compute
nodes, primarily when no data dependencies exist between tasks

• Example of sub-sub-workflow:

• Execution time: less than one
minute/tasks

• I/O filesystem overhead
• > 17,000 tasks

• -71% shards/tasks
• -73% execution –> Reduce

I/O filesystem overhead
16

Migrating from Legacy Workflows to WDL

• Porting Legacy workflows to WDL - Execution time:
Workflow Legacy workflow Using JAWS/WDL
Generate Reference Database (450M
genes)

13 hrs 6 hrs (using large memory
single node)

Horizontal Transfer (5M new genes) 2 hrs 1.3 hrs (single thread)

Phylogenetic Distribution (5M new
genes)

6.5 hrs 1.3 hrs (using 10 shards)

• Improving Existing Workflows - Using /tmp for some I/O intensive tasks:

Workflow % completed before % completed after
DAP-seq 76% 99%

53%

35%

80%

17

JAWS Support

JAWS has recently been adding new users + sites
• Larger user community in general with different needs

– Growing user community - no longer “WDL early adopters”
– Regular JAWS office hours for immediate support
– Periodic hackathons for intensive training and knowledge transfer
– Developing a JGI user community around WDL and Containers so that JAWS team is

not the sole source of support
– Personalized paired programming engagements to help WDL newcomers come up to

speed and migrate legacy workflows
– Bi-weekly JAWS User Meetings for community updates and feedback

18

JAWS Future

• Redesign of Performance Metrics and Monitoring system
• Deploying JAWS to ORNL and ANL
• NMDC has consolidated their workflow efforts on JAWS

– Additional requirements for programmatic access (JAWS API)
– JAWS-NMDC Tahoma Site

• Automatic routing of incoming jobs
• Support for requesting

– GPU nodes
• Increase resilience by migrating core JAWS services to cloud
• Expand metrics collection and visualization capabilities
• Closer integration with JGI’s JAMO so that data can be directly pulled

from/added to JAMO from workflows
• RQC integration

Current and Future Work

19

Thank you!

• IGC was currently implement in SAPS (Sequence Analysis Pipeline System)
– In-house workflow definition language and workflow manager
– Developed over the past 15 years

High-level overview of IGC

repeatMasker

pasaAssemble

exonerateForLoci:
blastxForLoci

taModel_hiConfAUP
predictGene

selectPredictionpasaImprove

filterGene

fixIncomplete

completeGene

Data Dump Browser

Manual Filter

Vetting

Locus Name

Archive/Finalization

Ref. Proteome (migrate)

Load GFF to PAC4GC, Protein
Annot

blastForESTorf

21

• IGC was currently implement in SAPS (Sequence Analysis Pipeline System)
– In-house workflow definition language and workflow manager
– Developed over the past 15 years

High-level overview of IGC

22

Workflow Example

Each oval = subworkflow
23

A sample subworkflow

! More nested subworkflows

24

A sub-subworkflow

sub-sub-subworkflow!

25

