HPC-Friendly Workflows in Julia

Johannes Blaschke Data Science Engagement Group NERSC, LBNL

Credit and Disclaimers

None of this would be possible without:

- Tim Bersard, Valentin Churavy, Julian Samaroo (MIT Julia Lab) + Anton Smirnov (AMD) + Carsten Bauer (NHR, PC2)
 - Providing the Infrastructure
- Marius Millea (UC Davis) + Mark Hirsbrunner (LBNL*) + William Godoy, Pedro Valero Lara (OLCF)
 - Inspiring applications
- The Julia for HPC working group
 - o https://github.com/JuliaParallel
 - Meets monthly on Zoom (cf. <u>https://julialang.org/community/</u>) and is very active on Discord
 - Julia for HPC BoF at SC and JuliaCon
- Soham Ghosh (NERSC)
 - Exploring AI applications: just-in-time AI, AI for science, UQ

Disclaimer:

• I work on Perlmutter, but can be (and has been) easily applied to HPC more broadly.

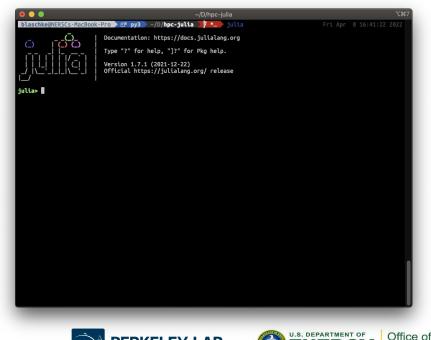
Overview

- 1. Julia in 60s
- 2. Julia + Jupyter as an interactive workflow engine
- 3. Network Discovery
- 4. Programming GPUs
- 5. Inspiration: Particles in Potentials
- 6. Machine Learning using Flux.jl
- 7. Using Dagger.jl to parallelize your workflow

Julia in 60s

Julia is a High-Productivity Language

• It has all the modern HP features (rich stdlib, gc, ...)



Julia is a High-Productivity Language

- It has all the modern HP features (rich stdlib, gc, ...)
- + a powerful REPL

Science

Julia is a High-Productivity Language

- It has all the modern HP features (rich stdlib, gc, ...)
- + a powerful REPL
- + a comprehensive package manager (which integrates with system software)

7


```
[extras]
MPIPreferences = "3da0fdf6-3ccc-4f1b-acd9-58baa6c99267"
CUDA_Runtime_jll = "76a88914-d11a-5bdc-97e0-2f5a05c973a2"
```

LocalPreferences.toml:

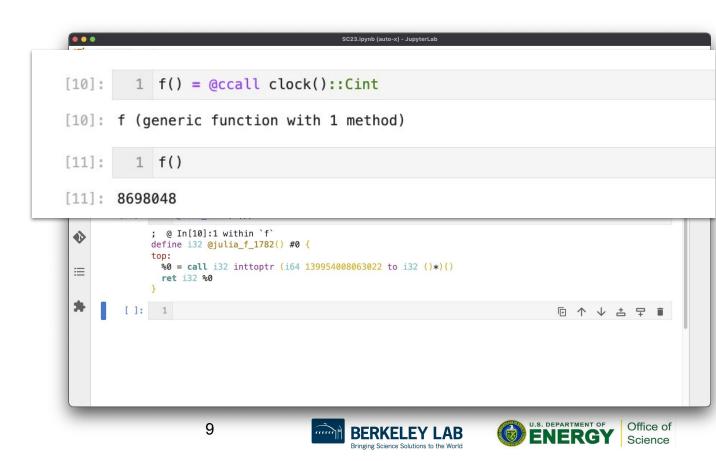
```
[MPIPreferences]
```

```
_format = "1.1"
abi = "MPICH"
binary = "system"
cclibs = ["cupti", "cudart", "cuda", "sci_gnu_82_mpi", "sci_gnu_82",
"dl", "dsmml", "xpmem"]
libmpi = "libmpi_gnu_91.so"
mpiexec = "srun"
preloads = ["libmpi_gtl_cuda.so"]
preloads_env_switch = "MPICH_GPU_SUPPORT_ENABLED"
```

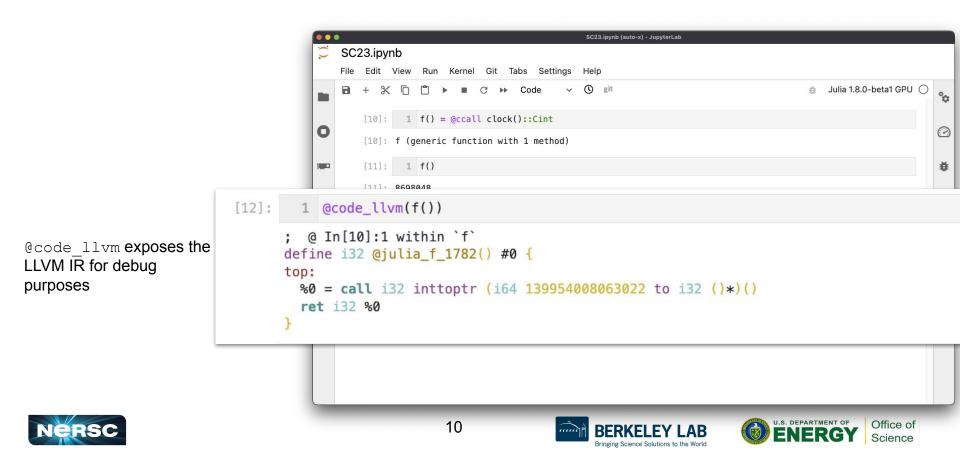
```
[CUDA_Runtime_jll]
local = "true"
version = "11.7"
```

Julia has LLVM under the Hood

 P + % □ □ > ■ C > Code > ○ git [10]: 1 f() = @ccall clock()::Cint [10]: f (generic function with 1 method) [11]: 1 f() [11]: 8698048 [12]: 1 @code_llvm(f()) ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 } []: 1 []: 1 			View Run Kernel Git Tabs Settings Help □ □ □ ► ■ C → Code ∨ ① git # Julia 1.8.0-beta1 GPU ○	1
<pre> [10]: f (generic function with 1 method) [11]: 1 f() [11]: 8698048 [12]: 1 @code_llvm(f()) ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 } </pre>		+ %	□ □ ► Code ∨ O git # Julia 1.8.0-beta1 GPU ○	Ŷ
<pre>[10]: f (generic function with 1 method) [11]: 1 f() [11]: 8698048 [12]: 1 @code_llvm(f()) ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 }</pre>	0	[10]:	1 f() = @ccall clock()::Cint	
<pre>[11]: 8698048 [12]: 1 @code_llvm(f()) ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 }</pre>		[10]:	f (generic function with 1 method)	<u></u>
<pre>[12]: 1 @code_llvm(f()) ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 }</pre>		[11]:	1 f()	ŧ
<pre> ; @ In[10]:1 within `f` define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 } </pre>		[11]:	8698048	
<pre>define i32 @julia_f_1782() #0 { top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 }</pre>		[12]:	1 @code_llvm(f())	
<pre>top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)() ret i32 %0 }</pre>	•			
▶ []: 1 厄 ↑ ↓ 古 早 前			top: %0 = call i32 inttoptr (i64 139954008063022 to i32 ()*)()	
	*	[]:		
	*	[]:		


Bringing Science Solutions to the World

Julia has LLVM under the Hood


Julia data types are binary-compatible with C

@ccall equivalent to c function call

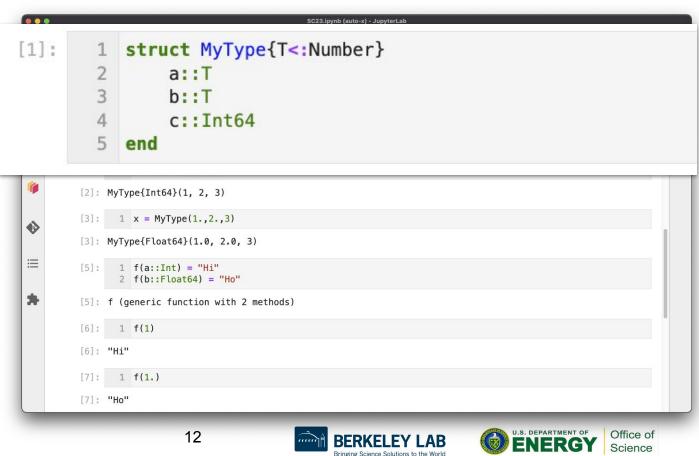
Julia has LLVM under the Hood

Julia has a Powerful Type System

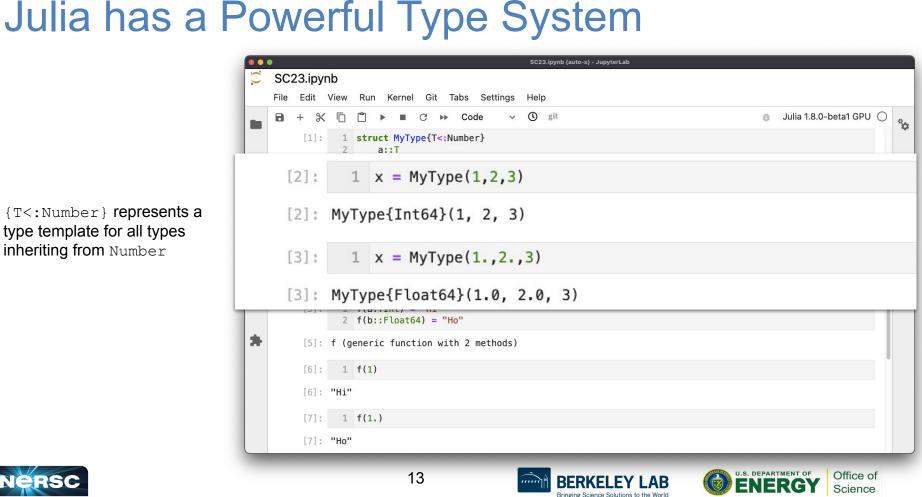
11

I	File Edit	View Run Kernel Git Tabs Settings Help	
	8 + %	□ 🗂 ► ■ C ↔ Code ∨ 🕓 git	🎄 Julia 1.8.0-beta1 GPU 🔾 💡
	[1]:	<pre>1 struct MyType{T<:Number} 2 a::T</pre>	
0		3 b::T	C
		4 c::Int64 5 end	
	[2]		
<u></u>	[2]:	1 x = MyType(1,2,3)	
	[2]:	MyType{Int64}(1, 2, 3)	
	[3]:	1 x = MyType(1.,2.,3)	
	[3]:	MyType{Float64}(1.0, 2.0, 3)	
≔	[5]:	1 f(a::Int) = "Hi" 2 f(b::Float64) = "Ho"	
*	[5]:	f (generic function with 2 methods)	
	[6]:	1 f(1)	
	[6]:	"Hi"	
	[7]:	1 f(1.)	
	[7]:	"Но"	

mm



Julia has a Powerful Type System


Structured data types are also compatible with C

{T<:Number} represents a type template for all types inheriting from Number

{T<:Number} represents a type template for all types inheriting from Number

Julia has a Powerful Type System

				SC23.ipynb (auto-x) - JupyterLab			
		SC23.ipynb		ouzonpynia (auto-x) - oupyter cab			
			Run Kernel Git Tabs Settings	Help			
	_						
		8 + % 0	C → Code ∨	() git	Ŭ	Julia 1.8.0-beta1 GPU 🔘	° o
			<pre>struct MyType{T<:Number}</pre>				
	0	2 3	a::T b::T				\bigcirc
	-	4	c::Int64				
	180	5	end				ĕ
		[2]: 1	x = MyType(1,2,3)				-
	1	[2] - MyTy	/pe{Int64}(1, 2, 3)				
	_	[2]. 1	x = MuTupo(1 - 2 - 2)				
[5]:	1	f(a::Int)	= "Hi"				
5.00D		f(b::Float					
[5]:	f (g	eneric func	tion with 2 methods)				
	. 5						
[6]:	1	f(1)					
[0]:	1	1(1)					
[6]	"Hi"						
[0]:	пт						
[7]:	1	f(1.)					
[7]:	"Ho"						

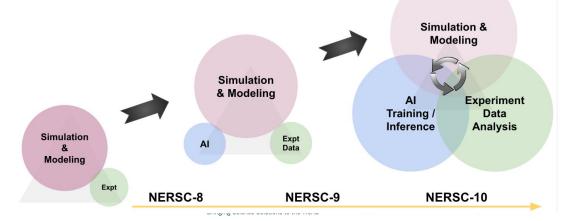
Julia has multiple dispatch: a function can have several implementations (methods) depending on the input types

Julia + Jupyter as an interactive workflow engine

Office of Science

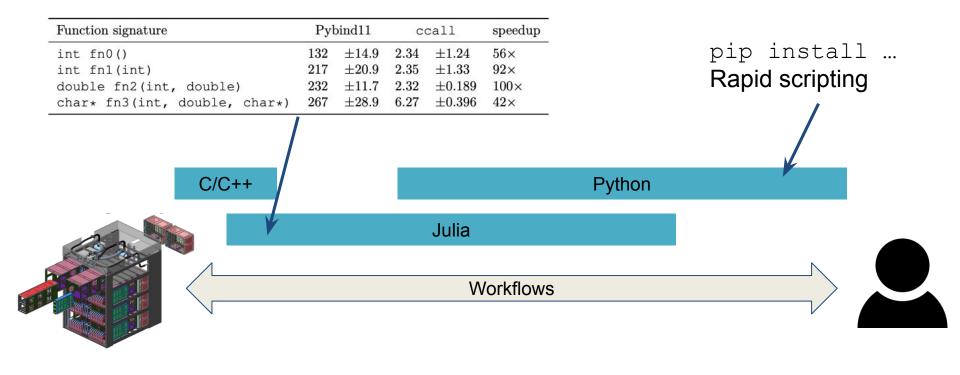
DOE SC User Requirements Are Evolving

IRI Science Patterns (3)


Time-sensitive pattern has urgency, requiring real-time or end-to-end performance with high reliability, e.g., for timely decision-making, experiment steering, and virtual proximity.

Data integration-intensive pattern requires combining and analyzing data from multiple sources, e.g., sites, experiments, and/or computational runs.

Long-term campaign pattern requires sustained access to resources over a long period to accomplish a well-defined objective.


Users require support for

- End-to-end DOE SC Workflows involving multiple facilities
- New modes of scientific discovery through the integration of simulation & modeling, AI and experiment.
- Interactive/Real-Time Workflows

Why NERSC Cares about Julia Workflows

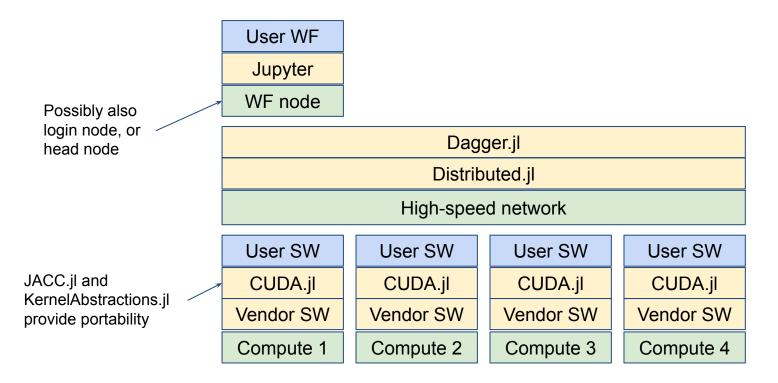
WF node

High-speed network

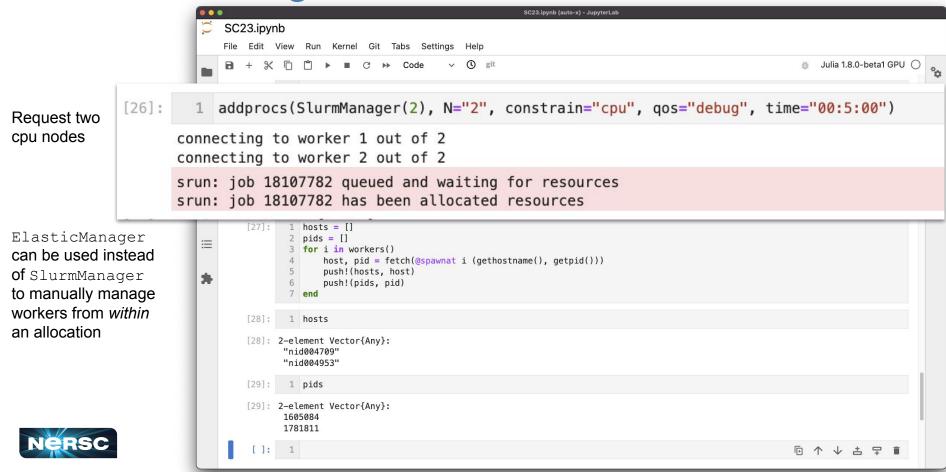
Compute 4 Compute 1 Compute 2 Compute 3

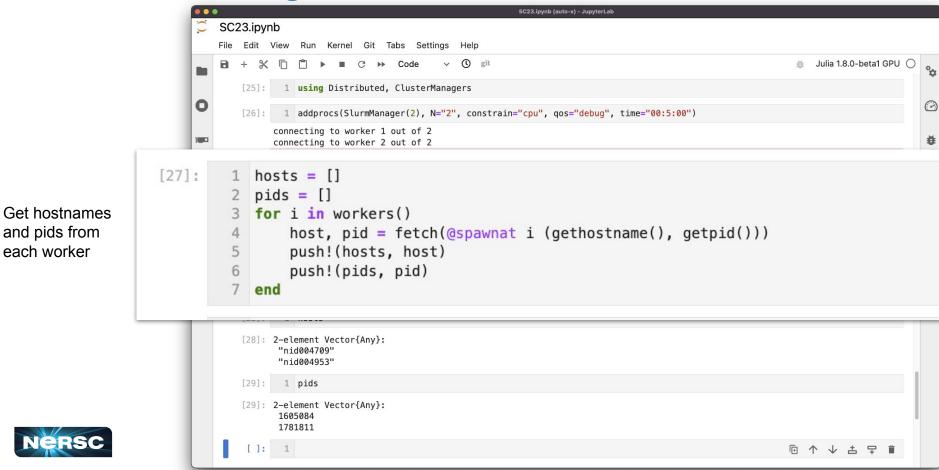
User WF

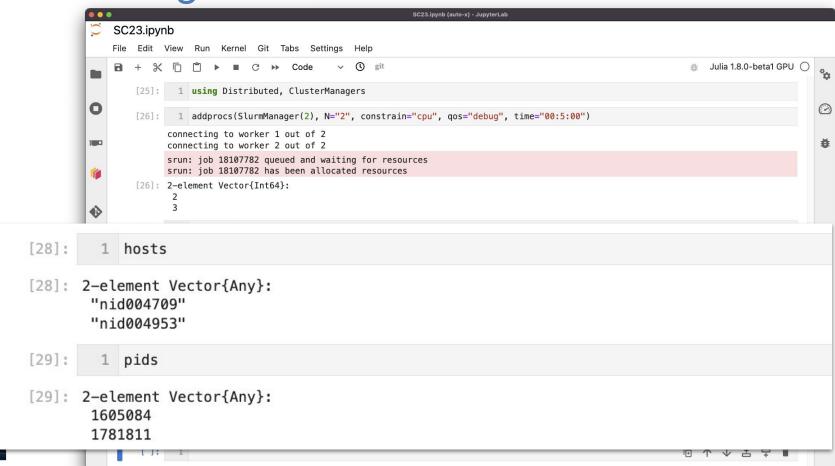
WF node


User WF Jupyter WF node

	Dag	ger.jl	
	Distrib	outed.jl	
	High-spee	ed network	
User SW	User SW	User SW	User SW
CUDA.jl	CUDA.jl	CUDA.jl	CUDA.jl
Vendor SW	Vendor SW	Vendor SW	Vendor SW
Compute 1	Compute 2	Compute 3	Compute 4







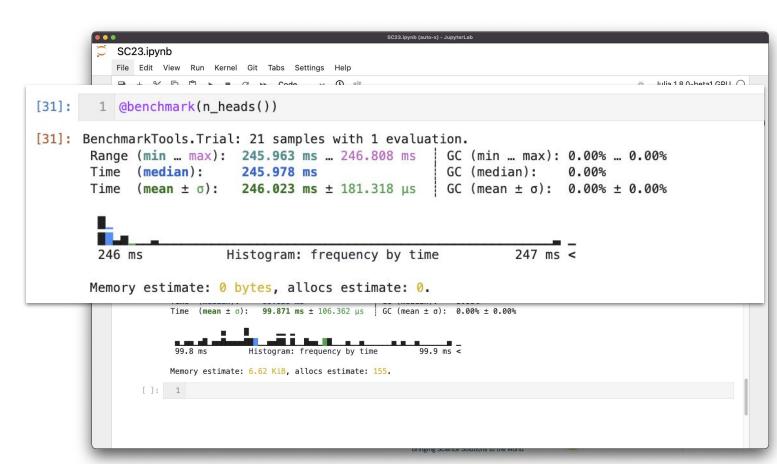
••	•		SC23.ipynb (auto-x) - JupyterLab		
\mathbf{C}	SC23	.ipynl	hb		
	File E	dit V	View Run Kernel Git Tabs Settings Help		
	8 +	ж	□ □ ► ■ C → Code ∨ O git	🐞 Julia 1.8.0-beta1 GPU 🔘	°¢
	[2	25]:	1 using Distributed, ClusterManagers		
0	[2	26]:	<pre>1 addprocs(SlurmManager(2), N="2", constrain="cpu", qos="debug", time="00:5:00")</pre>		
180			connecting to worker 1 out of 2 connecting to worker 2 out of 2		ĕ
1			srun: job 18107782 queued and waiting for resources srun: job 18107782 has been allocated resources		
	[2	26]: 2	2-element Vector{Int64}: 2		
			3		
⊨	[2	27]:	<pre>hosts = [] pids = [] for i in workers() host, pid = fetch(@spawnat i (gethostname(), getpid()))</pre>		
*			<pre>5 push!(hosts, host) 6 push!(pids, pid) 7 end</pre>		
	[2	28]:	1 hosts		
	[2		2-element Vector{Any}: "nid004709" "nid004953"		
	[2	29]:	1 pids		
	[2		2-element Vector{Any}: 1605084 1781811		
		[]:	1	匝 ↑ ↓ 古 早 盲	

Distributed.jl supports basic workflows

Basic task: count number of heads from 2x10^8 fair coin tosses.

- Serial implementation: for loop + increment counter
- Parallel (distributed) implementation:
 @distributed for loop + reduction (summation) on counter
- Most Julia data types are trivial to serialize and communicate over network (the users doesn't have to do anything "special" to enable this)

```
function n_heads()
        n = 0
        for i = 1:200000000
            n += Int(rand(Bool))
        end
 6
        n
   end
 8
   function n heads parallel()
10
        nheads = @distributed (+) for i = 1:200000000
            Int(rand(Bool))
11
12
        end
13
        nheads
14 end
```

Performance Gains from Distributing Work

[31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00%	ŏ		Julia	a 1.8	0.0				
 + * © © > • Code ~ © git [33]: 1 using BenchmarkTools [31]: 1 @benchmark(n_heads()) [31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00% 	ŏ		Julia	a 1.8	0.0				
<pre>[33]: 1 using BenchmarkTools [31]: 1 @benchmark(n_heads()) [31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00%</pre>	ð		Julia	a 1.8	0 0				
<pre> [31]: 1 @benchmark(n_heads()) [31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00% </pre>					8.0-	beta	1 GF	PU (С
<pre>[31]: 1 @benchmark(n_heads()) [31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00%</pre>									
Range (min max): 245.963 ms 246.808 ms GC (min max): 0.00% 0.00%	Ð	\uparrow	• •	\checkmark	÷	+	Ĩ	Ì	
Time (median): 245.978 ms GC (median): 0.00% Time (mean ± σ): 246.023 ms ± 181.318 μs GC (mean ± σ): 0.00% ± 0.00%									
♦ 246 ms Histogram: frequency by time 247 ms <									
Memory estimate: 0 bytes, allocs estimate: 0.									
[32]: 1 @benchmark(n_heads_parallel())									
 [32]: BenchmarkTools.Trial: 51 samples with 1 evaluation. Range (min max): 99.827 ms 100.605 ms Time (median): 99.855 ms Time (mean ± σ): 99.871 ms ± 106.362 μs GC (mean ± σ): 0.00% ± 0.00% 									
99.8 ms Histogram: frequency by time 99.9 ms <									
Memory estimate: 6.62 KiB, allocs estimate: 155.									

Performance Gains from Distributing Work

Performance Gains from Distributing Work

SC23.ipynb (auto-x) - JupyterLab SC23.ipynb File Edit View Run Kernel Git Tabs Settings Julia 1.8.0-beta1 GPU 🔘 * 5 ſ٦. C D Code 0 å 1 using BenchmarkTools 0 \bigcirc [31]: @benchmark(n heads()) 向个 ↓ 古 무 [31]: BenchmarkTools.Trial: 21 samples with 1 evaluation. 蓋 [32]: 1 @benchmark(n_heads_parallel()) BenchmarkTools.Trial: 51 samples with 1 evaluation. [32]: Range (min ... max): 99.827 ms ... 100.605 ms GC (min ... max): 0.00% ... 0.00% (median): 99.855 ms GC (median): 0.00% Time **99.871 ms** \pm 106.362 µs GC (mean $\pm \sigma$): 0.00% \pm 0.00% Time $(mean \pm \sigma)$: 99.8 ms Histogram: frequency by time 99.9 ms < Memory estimate: 6.62 KiB, allocs estimate: 155.

Distributing work over 2 nodes results in a 2x performance increase

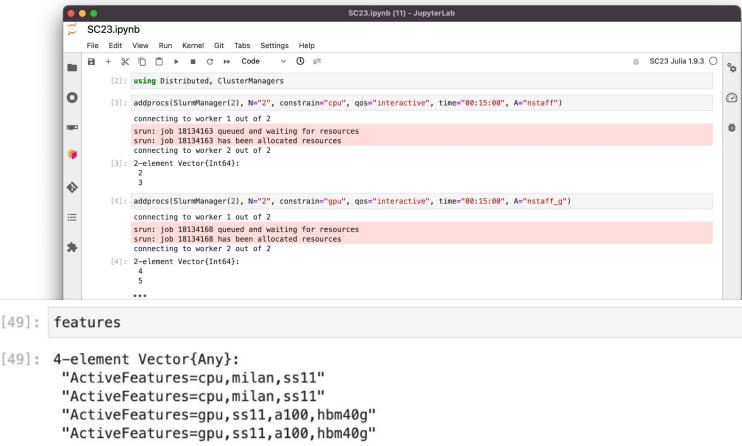
		SC23.ipynb (11) - JupyterLab		
\bigcirc	SC23.ipy	b		
	File Edit	View Run Kernel Git Tabs Settings Help		
	• + %	□ □ ► ■ C → Code ∨ O git	🐞 SC23 Julia 1.9.3 🔾	°
	[2]:	using Distributed, ClusterManagers		
0	[3]:	addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")		
		connecting to worker 1 out of 2		
		srun: job 18134163 queued and waiting for resources srun: job 18134163 has been allocated resources		Ŭ
ſ,	[2].	connecting to worker 2 out of 2 2-element Vector{Int64}:		
	[2];	2		
•		3		
	[4]:	addprocs(SlurmManager(2), N="2", constrain="gpu", qos="interactive", time="00:15:00", A="nstaff_g")		
≣		connecting to worker 1 out of 2		
*		srun: job 18134168 queued and waiting for resources srun: job 18134168 has been allocated resources connecting to worker 2 out of 2		
	[4]:	2-element Vector{Int64}: 4 5		

	[48]:	<pre>features = [] for i in workers() scontrol = fetch(@spawnat i get_features()) push!(features, scontrol) end</pre>		
	[49]:	features		
	[49]:	<pre>4-element Vector{Any}: "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=cpu,ss11,a100,hbm40g" "ActiveFeatures=gpu,ss11,a100,hbm40g"</pre>		
	[]:			

			SC23.ipynb (11) - JupyterLab SC23.ipynb Eile Edit View Run Kernel Git Tabs Settings Help	
[3]:	addprocs	s(S1	urmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")	
	connect	ing	to worker 1 out of 2	
	srun: jo	b 1	8134163 queued and waiting for resources 8134163 has been allocated resources to worker 2 out of 2	
[3]:			ector{Int64}:	
		≡ *	<pre>connecting to worker 1 out of 2 srun: job 18134168 queued and waiting for resources srun: job 18134168 has been allocated resources connecting to worker 2 out of 2 [4]: 2-element Vector{Int64}: 4</pre>	

			SC23.ipynb (11) - JupyterLab	
		0	SC23.ipynb	
			File Edit View Run Kernel Git Tabs Settings Help	
			H + % □ □ + Code ∨ ③ git SC23 Julia 1.9.3 (SC23 Ju) ₀₀
			[2]: using Distributed, ClusterManagers	
		0	<pre>[3]: addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")</pre>	
		_	connecting to worker 1 out of 2	
			srun: job 18134163 queued and waiting for resources	ŧ
[4]:	addpro	cs(S	<pre>SlurmManager(2), N="2", constrain="gpu", qos="interactive", time="00:15:00", A="nstaff_g"</pre>	')
	connec	ting	to worker 1 out of 2	
		-	18134168 queued and waiting for resources 18134168 has been allocated resources	
	connec	ting	to worker 2 out of 2	
[4]:	2-elem 4	ent	Vector{Int64}:	
	5			

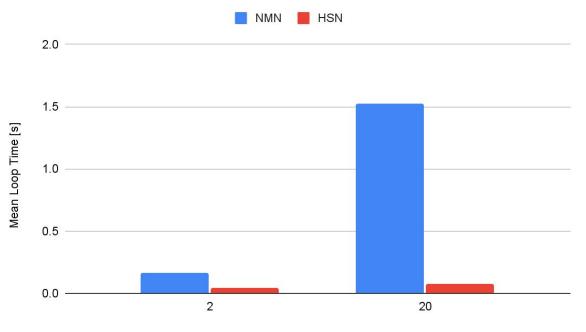
[48]	<pre>: features = [] for i in workers() scontrol = fetch(@spawnat i get_features()) push!(features, scontrol) end</pre>	
[49]	: features	
[49]	: 4-element Vector{Any}: "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=gpu,ss11,a100,hbm40g" "ActiveFeatures=gpu,ss11,a100,hbm40g"	



\bigcirc	SC23.ipy	nb
	File Edit	View Run Kernel Git Tabs Settings Help
	D + >	[[]] ▶ ■ C → Code ∨ () git # SC23 Julia 1.9.3
	[2]:	using Distributed, ClusterManagers
0	[3]:	<pre>addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")</pre>
		connecting to worker 1 out of 2
		srun: job 18134163 queued and waiting for resources srun: job 18134163 has been allocated resources
1	[3]:	connecting to worker 2 out of 2 2-element Vector{Int64}: 2
�		3
	[4]:	<pre>addprocs(SlurmManager(2), N="2", constrain="gpu", qos="interactive", time="00:15:00", A="nstaff_g")</pre>
≣		connecting to worker 1 out of 2
		srun: job 18134168 queued and waiting for resources srun: job 18134168 has been allocated resources
7		connecting to worker 2 out of 2

[49]: 4-element Vector{Any}: "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=cpu,milan,ss11" "ActiveFeatures=gpu,ss11,a100,hbm40g" "ActiveFeatures=gpu,ss11,a100,hbm40g"

Tangent: Network Discovery



Office of Science

Workflow Support Story

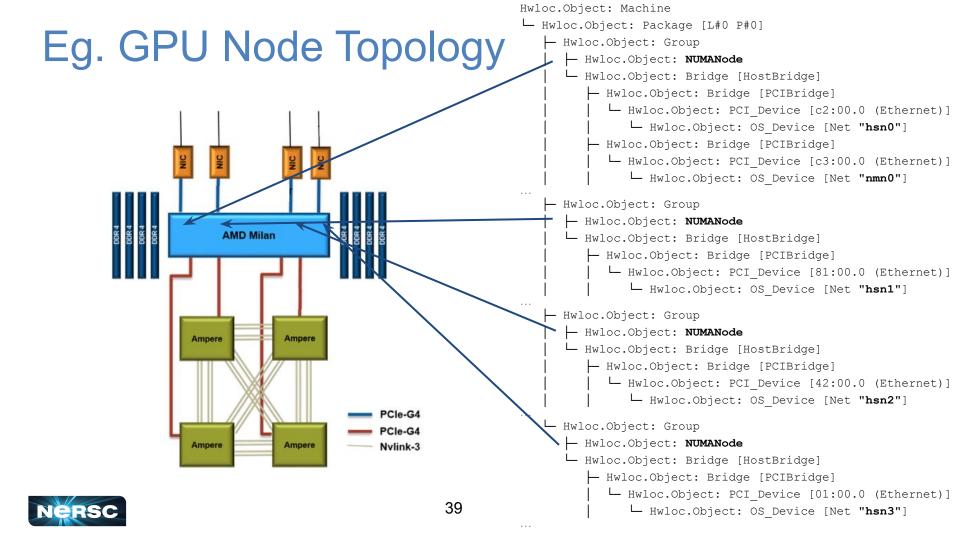
- Unexpected poor performance and scaling
- User application 100x slower on Perlmutter

Number of Workers

Perlmutter is a Heterogeneous System

Partition	Node s	CPU	RAM	GPU	NIC
GPU	1536	1x AMD EPYC 7763	256GB	4x <u>NVIDIA A100</u> (40GB)	4x HPE Slingshot 11
	256	1x AMD EPYC 7763	256GB	4x <u>NVIDIA A100</u> (80GB)	4x HPE Slingshot 11
CPU	3072	2x AMD EPYC 7763	512GB	-	1x HPE Slingshot 11
Login	40	1x AMD EPYC 7713	512GB	4x <u>NVIDIA A100</u> (40GB)	-
Large Memory	4	1x <u>AMD EPYC 7713</u>	1TB	4x <u>NVIDIA A100</u> (40GB)	1x <u>HPE Slingshot 11</u>

- Each GPU node has 4 NICs. 1 NIC and 1 GPU per host bridge
- Each CPU node has 1 NIC



Topo distance to NIC

 Finding the right NIC is easy now: pick the (non-nmn) interface with lowest tree distance between your core and the PCI device

```
for net in collect(network_devs)
    found, dist = distance_to_core(hwloc_tree, net, cpu_id)
    print("$(dist): ")
    print_tree(net)
end
```

```
213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]

└ Hwloc.Object: OS_Device [Net "hsn0"]

213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]

└ Hwloc.Object: OS_Device [Net "nmn0"]

47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]

└ Hwloc.Object: OS_Device [Net "hsn1"]

379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]

└ Hwloc.Object: OS_Device [Net "hsn2"]

379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]

└ Hwloc.Object: OS_Device [Net "hsn3"]
```


Topo distance to NIC

 Finding the right NIC is easy now: pick the (non-nmn) interface with lowest tree distance between your core and the PCI device

This one!

```
for net in collect(network_devs)
    found, dist = distance_to_core(hwloc_tree, net, cpu_id)
    print("$(dist): ")
    print_tree(net)
end
```

```
213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]

    Hwloc.Object: OS_Device [Net "hsn0"]

213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]

    Hwloc.Object: OS_Device [Net "nmn0"]

47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]

    Hwloc.Object: OS_Device [Net "hsn1"]

379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]

    Hwloc.Object: OS_Device [Net "hsn2"]

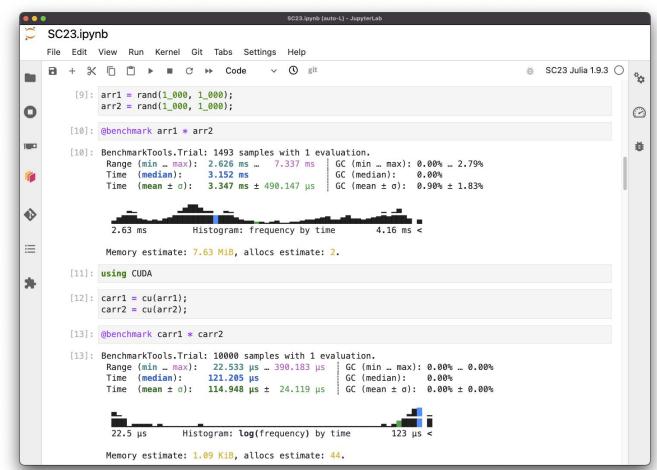
379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]

    Hwloc.Object: OS_Device [Net "hsn3"]
```

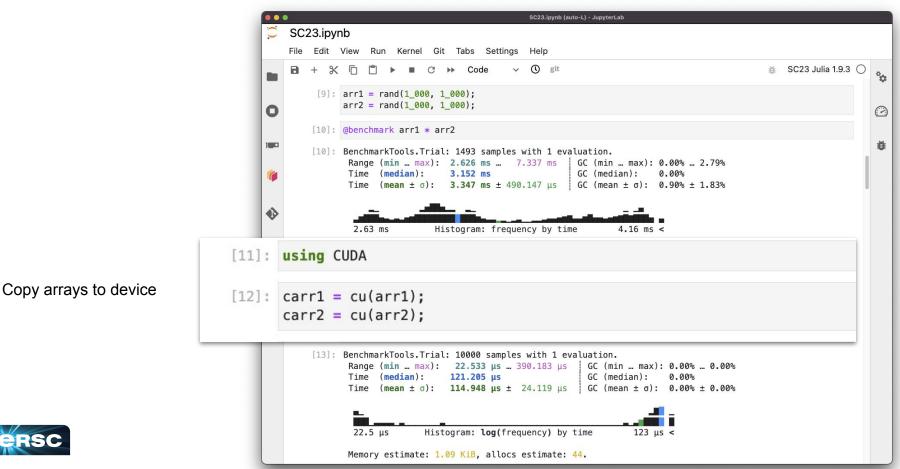

Future

- This is pre-alpha, so far only deployed at NERSC
 Looking for folks to test this at NERSC and on their favorite HPC systems
- Distributed.jl to use distance between NIC and Core (on Hwloc tree) to select preferred tree NIC
 - o JuliaParallel/NetworkInterfaceControllers.jl

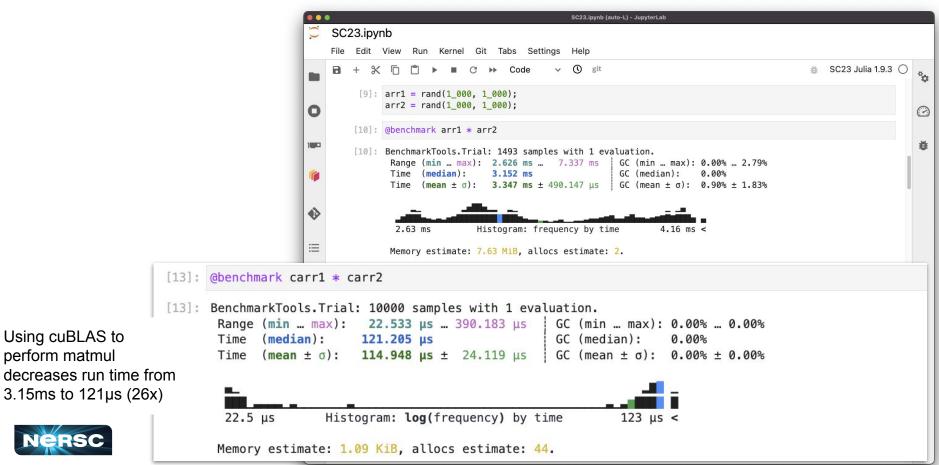
Programming GPUs

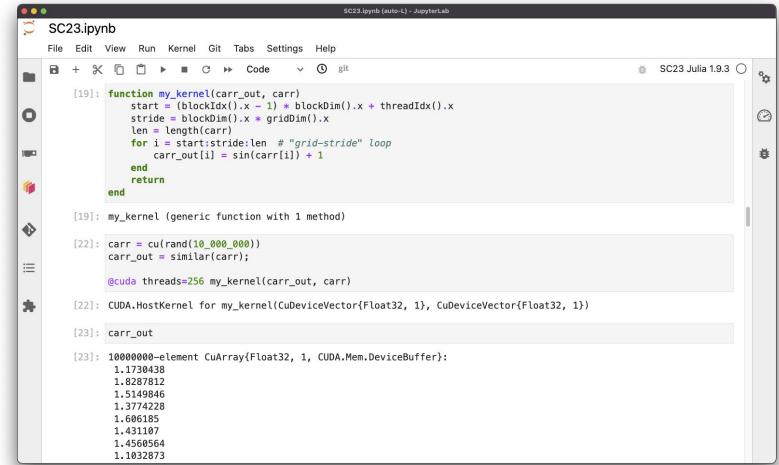






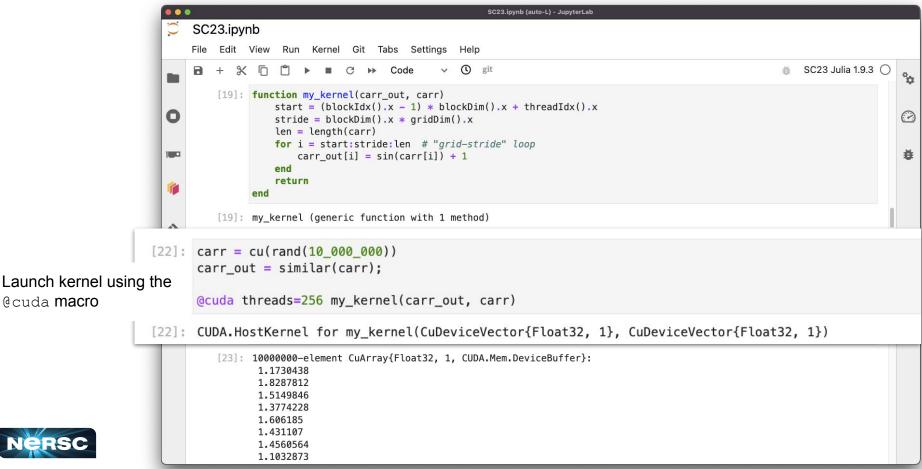
Office of Science





perform matmul

Write Your Own CUDA Kernels in Julia



Write Your Own CUDA Kernels in Julia

```
SC23.ipynb (auto-L) - JupyterLab
                           0 0 0
                              SC23.ipynb
                  [19]: function my_kernel(carr_out, carr)
                               start = (blockIdx().x - 1) * blockDim().x + threadIdx().x
                               stride = blockDim().x * gridDim().x
                               len = length(carr)
Define kernels using
                               for i = start:stride:len # "grid-stride" loop
Julia functions
                                    carr_out[i] = sin(carr[i]) + 1
                               end
                               return
                          end
                                  [22]: carr = cu(rand(10 000 000))
                                       carr_out = similar(carr);
                          \equiv
                                       @cuda threads=256 my_kernel(carr_out, carr)
                          -
                                  [22]: CUDA.HostKernel for my_kernel(CuDeviceVector{Float32, 1}, CuDeviceVector{Float32, 1})
                                  [23]: carr_out
                                  [23]: 1000000-element CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}:
                                        1.1730438
                                        1.8287812
                                        1.5149846
                                         1.3774228
                                         1.606185
                                         1.431107
                                         1.4560564
                                         1.1032873
```

Write Your Own CUDA Kernels in Julia

CUDA.jl provides detailed profiling interface

••	•					SC23.ipynb	(auto-L) - JupyterLab						
\mathbf{C}	SC2	23.ipyr	hb										
	File	Edit	View Run K	ernel Git Ta	abs Setti	ngs Help							
	8	+ %		[1] ▶ ■ C → Code ∨ ③ git [2] git [3] SC23 Julia 1.9.3 ○									
		[14]:	CUDA.@profil	CUDA.@profile carr1 * carr2									
0		[14]:	Profiler ran	n for 2.23 ms	s, captu	ring 23 event	ts.				\odot		
			Host_side a	tivity, call	ing (UD/	APTs took	1.96 ms (87.8	21% of the t	cace)				
180				civity. cat	cing cobr	A AFIS LOOK .	1.90 113 (07.0				ë		
			Time (%)	Time	Calls	Avg time	Min time	Max time	Name …				
1			29.29%	653.51 µs	1	653.51 μs	653.51 μs	653.51 μs	cuMemAllo …				
			18.15%	404.83 µs	1	404.83 µs	404.83 µs	404.83 µs	cudaEvent …				
			1.12%	25.03 µs	1	25.03 µs	25.03 µs	25.03 µs	cudaLaunc …				
			0.82%	18.36 µs	1	18.36 µs	18.36 µs	18.36 µs	cudaMemse …				
			0.44%	9.78 μs	2	4.89 μs	953.67 ns	8.82 μs	cudaOccup …				
			0.28%	6.2 µs	3	2.07 µs	476.84 ns	4.77 μs	cudaStrea …				
≣			0.26%	5.72 μs	1	5.72 μs	5.72 μs	5.72 μs	cudaEvent …				
			0.00%	0.0 ns	1	0.0 ns	0.0 ns	0.0 ns	cudaGetLa …				
*				ibat tatat instant tail tail a	a tali Sati Schole	and dat the off the take		1 c	olumn omitted				
	Device-side activity: GPU was busy for 160.22 μs (7.18% of the trace)												
			Time (%)	Time	Calls	Avg time	Min time	Max time	Name				

Time (%)	Time	Calls	Avg time	Min time	Max time	Name …
7.09%	158.07 µs	1	158.07 µs	158.07 µs	158.07 μs	ampere_sg …
0.10%	2.15 µs	1	2.15 µs	2.15 µs	2.15 µs	[set devi …

1 column omitted

(advanced) LLVM + Julia

Julia provides interfaces to the LLVM backend.

Eg.:

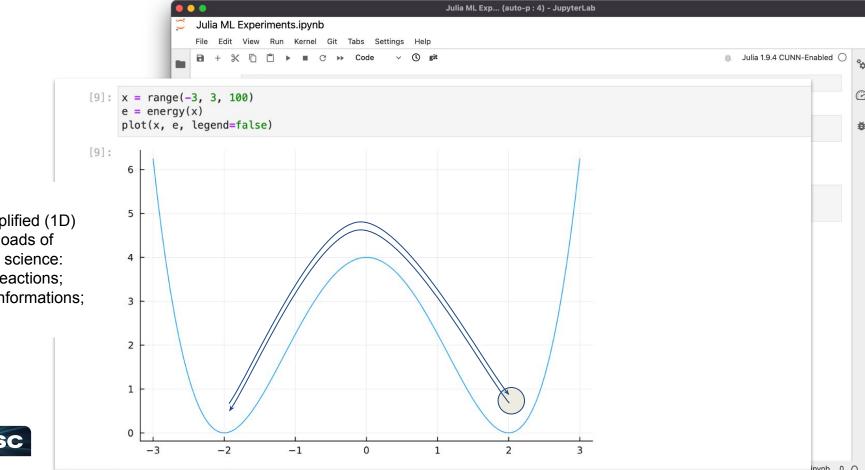
- loopinfo
- llvmcall

```
[16]: macro unroll(expr)
          expr = loopinfo("@unroll", expr, (Symbol("llvm.loop.unroll.full"),))
          return esc(expr)
      end
      for (jlf, f) in zip((:+, :*, :-), (:add, :mul, :sub))
          for (T, llvmT) in ((:Float32, "float"), (:Float64, "double"))
              ir = """
                  %x = f$f contract nsz $llvmT %0, %1
                  ret $llvmT %x
              111111
              @eval begin
                  # the @pure is necessary so that we can constant propagate.
                  @inline Base.@pure function $jlf(a::$T, b::$T)
                      Base.llvmcall($ir, $T, Tuple{$T, $T}, a, b)
                  end
              end
          end
          @eval function $jlf(args...)
              Base.$jlf(args...)
          end
      end
```


Office of

Science

Inspiration: Particles in Potentials


Office of Science

Transition Rates between Potential Minima

File	Edit	View Run Kernel Git Tabs Settings Help	
. 8	+ %	□ □ ► ■ C → Code ∨ ③ git ♦ Julia 1.9.4 CUNN-Enabled (C
-	[1]:	using Plots	
0		•••	
	[4]:	energy(x; a=2, k=1) = @. $0.25 * k * ((x-a)^2) * ((x+a)^2)$ force(x; a=2, k=1) = @. $-k * x * (x-a) * (x+a)$	
•	[4]:	force (generic function with 1 method)	
•>	[9]:	<pre>x = range(-3, 3, 100) e = energy(x) plot(x, e, legend=false)</pre>	
*	[9]:		

Transition Rates between Potential Minima

This is a highly-simplified (1D) model for loads of interesting science: chemical reactions; protein conformations; etc

		xperiments.ipynb	
		view Run Kernel Git Tabs Settings Help	
	8 + %	□ □ ▶ ■ C → Code ∨ () git	Julia 1.9.4 CUNN-Enabled
	[10]:	using Random, Distributions	
0	[11]:	Random.seed!(123)	
	[11]:	TaskLocalRNG()	
1	[12]:	#this is step A position_update(x, v, dt) = @. x + v∗dt/2.	
		<pre>#this is step B velocity_update(v,F,dt) = @. v + F*dt/2.</pre>	
≔		<pre>function random_velocity_update(v::AbstractVector, gamma::Number, kBT::Number, dt::Number; d=Normal(0, 1)) R = rand(d, length(v))</pre>	
*		c1 = 0. exp(-gamma#dt) c2 = 0. exp(-gamma#dt) c2 = 0. sqrt(1-c1*c1)*sqrt(kBT) v_new = 0. c1*v + R*c2 return v_new end	
		random_velocity_update(v::Number, gamma::Number, kBT::Number, dt::Number; d=Normal(0, 1)) = only(random_velocity_update([v], gamma, kBT, dt; d))	
	[12]:	random_velocity_update (generic function with 2 methods)	
	[13]:	<pre>function baoab(energy::Function, force::Function, max_time, dt, gamma, kBT, initial_position::T, initial_velocity::T; save_frequency = 3, kwargs) where T <: Number</pre>	
		<pre>x = initial_position v = initial_velocity t = 0</pre>	

Julia ML Exp (auto-p : 4) - JupyterLab
code v 🕐 git 🔅 Julia 1.9.4 CUNN-Enabled 🔿
<pre>@. v + F*dt/2. update(, gamma::Number, kBT::Number, dt::Number;) %sqrt(kBT) 2 ber, kBT::Number, dt::Number; d=Normal(0, 1) update([v], gamma, kBT, dt; d)) eneric function with 2 methods) force::Function, max_time, dt, al_position::T, initial_velocity::T; 3, kwargs</pre>

```
.
                                                       Julia ML Exp... (auto-p: 4) - JupyterLab
            Julia ML Experiments.ipynb
             File Edit View Run Kernel Git Tabs Settings
                                                 Help
             % [□ 📋 🕨 🔳 C 🕨 Code

    ( ) git

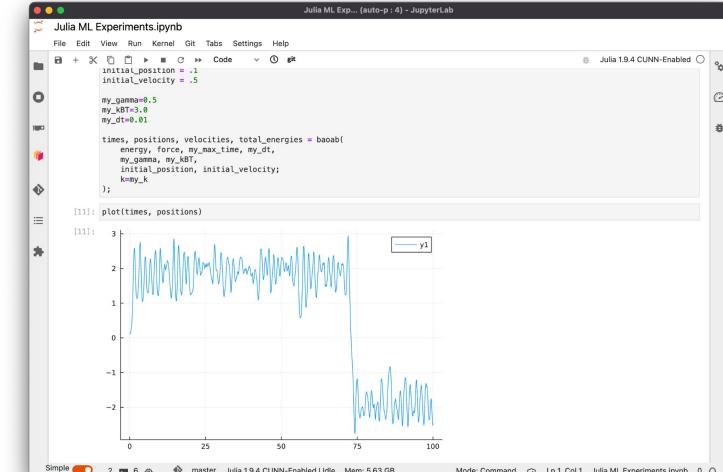
                                                                                                         Julia 1.9.4 CUNN-Enabled
         [10]: using Random, Distributions
         0
                                                                                                                            0
                [11]: Random.seed!(123)
                [11]: TaskLocalRNG()
         1
                                                                                                                             ð
                [12]: #this is step A
[12]: #this is step A
       position_update(x, v, dt) = (a_1 + v*dt/2).
       #this is step B
       velocity_update(v,F,dt) = @. v + F*dt/2.
       function random_velocity_update(
                v::AbstractVector, gamma::Number, kBT::Number, dt::Number;
                d=Normal(0, 1)
           R = rand(d, length(v))
           c1 = (a. exp(-gamma * dt))
           c2 = (0. sqrt(1-c1*c1)*sqrt(kBT))
           v_{new} = @. c1*v + R*c2
           return v_new
       end
       random_velocity_update(
           v::Number, gamma::Number, kBT::Number, dt::Number; d=Normal(0, 1)
       ) = only(random_velocity_update([v], gamma, kBT, dt; d))
```

Mode: Command
https://www.upic.command.com/

Simple _____ 2 ___ 6 ___ Master Julia 19.4 CUNN-Enabled Lidle Mom: 5.66 CB

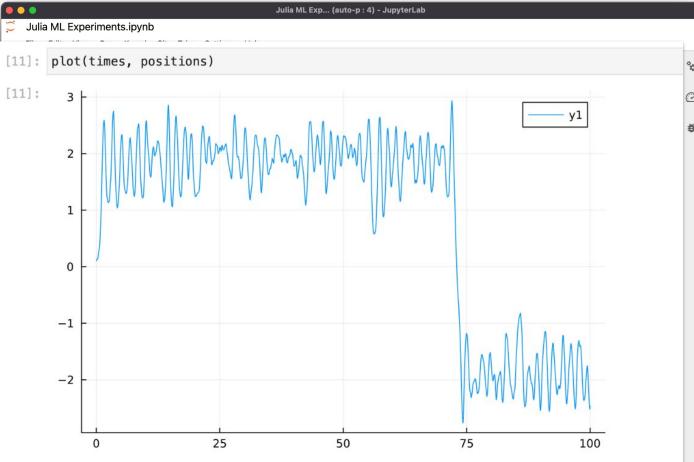
Define SDE algorithm

SDE algorithms can be long and complex!


```
.
                                                           Julia ML Exp... (auto-p : 4) - JupyterLab
    Julia ML Experiments.ipynb
     File Edit View Run Kernel Git Tabs Settings
                                                    Help
     ×
                Ē
                   r°1
                                       Code
                                                    ( git
                                                                                                                            Julia 1.9.4 CUNN-Enabled
                               C
[13]: function baoab(
                       energy::Function, force::Function, max_time, dt,
0
                                                                                                                                                     0
                       gamma, kBT, initial_position::T, initial_velocity::T;
                       save_frequency = 3, kwargs...
                   ) where T <: Number
                                                                                                                                                     ð
1
                   x = initial_position
                   v = initial velocity
1
                   t = 0
                   step_number = 0
                   positions = T[]
velocities = T[]
                   total_energies = T[]
                   save_times = T[]
≣
                   while t < max_time</pre>
                       # B
                       potential force = force(x; kwarqs...)
*
                       v = velocity_update(v, potential_force, dt)
                       # A
                       x = position_update(x, v, dt)
                       # 0
                       v = random_velocity_update(v, gamma, kBT, dt)
                       # A
                       x = position_update(x, v, dt)
                       # B
                       potential_force = force(x; kwargs...)
                       v = velocity update(v, potential force, dt)
                       potential energy = energy(x; kwargs...)
                       if step_number%save_frequency == 0 && step_number>0
                           e_total = @. .5*v*v + potential_energy
                           push!(positions, x)
                           push!(velocities, v)
                           push!(total_energies, e_total)
                           push!(save_times, t)
                       end
  Simple
```

Mode: Command
 In 1 Col 1 Julia MI Experiments inveh 0 0

master Julia 19.4 CLINN-Enabled Lidle Mem: 5.66 GR

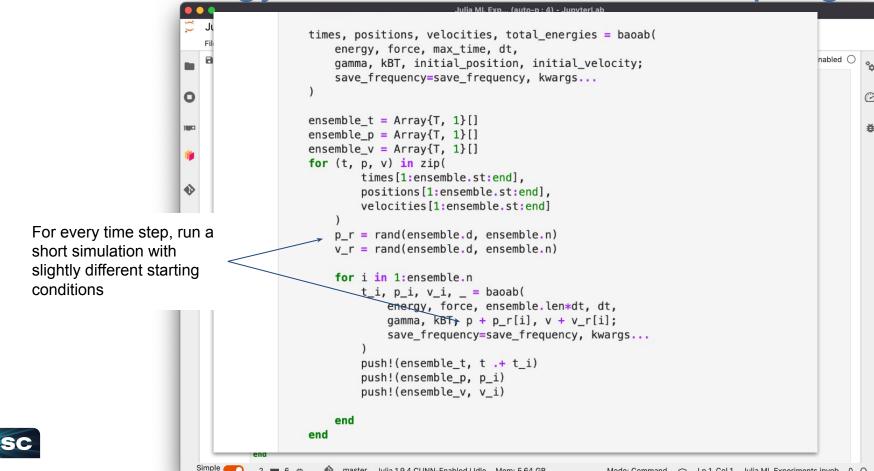

2 6 6

Transitions are Rare!

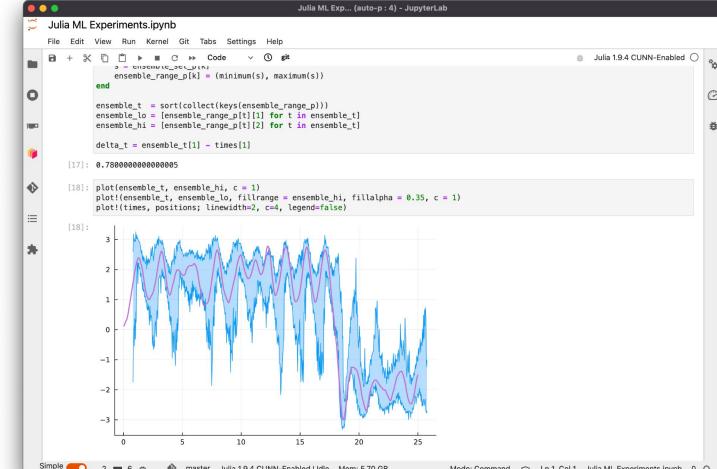
Often you will 100s of millions of data points in order to collect a few thousand transitions

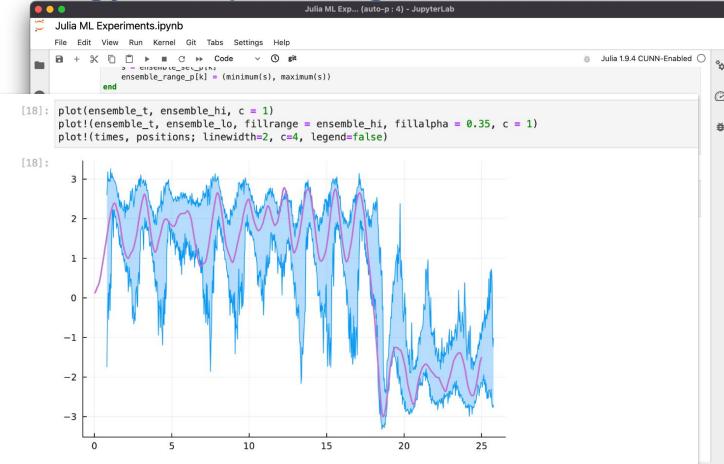

0

ă

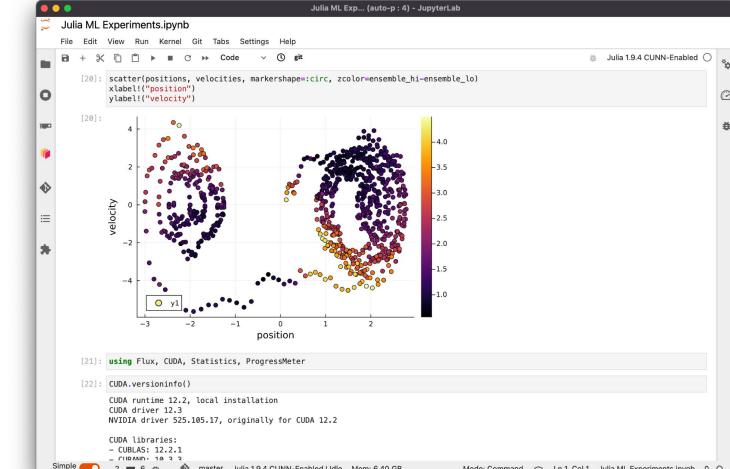

Transitions are Rare!

```
.
                                                           Julia ML Exp... (auto-p: 4) - JupyterLab
    Julia ML Experiments.ipynb
     File Edit View Run Kernel Git Tabs Settings
                                                    Help
     B
                                                    0
                                                       git
                                                                                                                            Julia 1.9.4 CUNN-Enabled
                Ē.
                    ٣٦
[13]: function baoab ensemble(
                       energy::Function, force::Function, max_time, dt,
0
                       gamma, kBT, initial_position::T, initial_velocity::T;
                       save_frequency = 3, ensemble = (len=10, d=Normal(0, 0.01), n=10, st=10),
                       kwargs...
                   ) where T <: Number
                                                                                                                                                     đ
1
                   times, positions, velocities, total_energies = baoab(
                       energy, force, max_time, dt,
                       gamma, kBT, initial position, initial velocity;
                       save frequency=save frequency, kwarqs...
•
                   ensemble_t = Array{T, 1}[]
                   ensemble p = Array{T, 1}[]
≔
                   ensemble v = Arrav{T, 1}[]
                   for (t, p, v) in zip(
                           times[1:ensemble.st:end],
*
                           positions[1:ensemble.st:end],
                           velocities[1:ensemble.st:end]
                       p r = rand(ensemble.d, ensemble.n)
                       v_r = rand(ensemble.d, ensemble.n)
                       for i in 1:ensemble.n
                           t_i, p_i, v_i, _ = baoab(
                               energy, force, ensemble.len*dt, dt,
                               gamma, kBT, p + p r[i], v + v r[i];
                               save frequency=save frequency, kwargs...
                           push!(ensemble t, t .+ t i)
                           push!(ensemble p, p i)
                           push!(ensemble v, v i)
                       end
                   end
                   return times, positions, velocities, total energies, (t=ensemble t, p=ensemble p, v=ensemble v)
               end
  Simple
                  = 6 c Marter Julia 194 CUNN-Enabled Udla Mart 5 64 CB
                                                                                            Mode: Command 
    In 1 Col 1 Julia MI Experiments involu
```

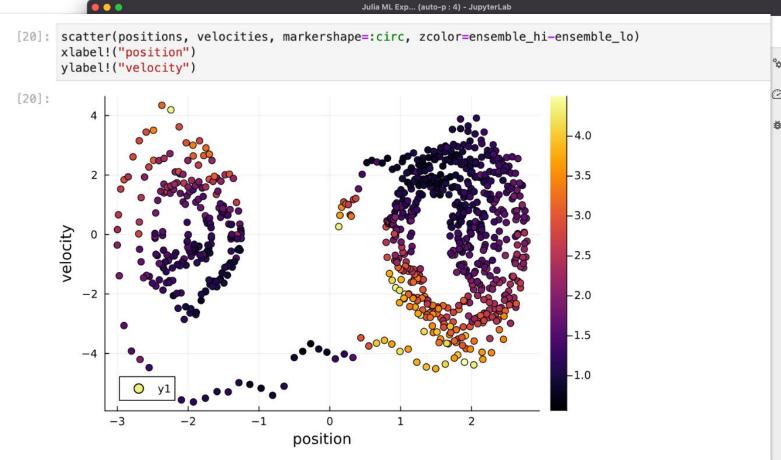





Solution Strategy: Adaptive Algorithms


Solution Strategy: Adaptive Algorithms

0 0


Start Mapping a Phase Space

Start Mapping a Phase Space

Simple (

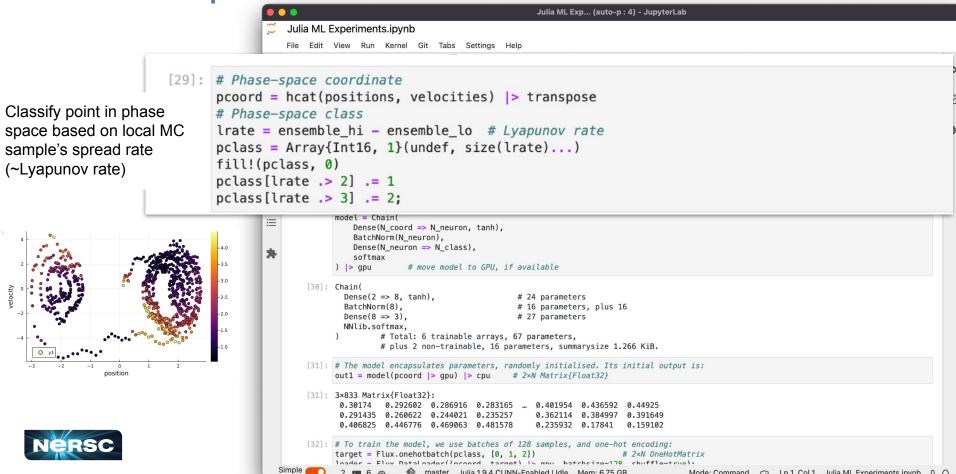
Machine learning using Flux.jl

Office of Science

Flux.jl Automatically Detects CUDA.jl

••		Julia ML Exp (auto-p : 4) - JupyterLab	
💭 J	ulia ML I	Experiments.ipynb	
Fi	ile Edit	View Run Kernel Git Tabs Settings Help	
- E) + X	C □ □ ▶ ■ C → Code ∨ ③ git	0
-	[21]:	using Flux, CUDA, Statistics, ProgressMeter	
0	[22]:	CUDA.versioninfo()	C
		CUDA runtime 12.2, local installation CUDA driver 12.3 NVIDIA driver 525.105.17, originally for CUDA 12.2	ŧ
1		CUDA libraries: - CUBLAS: 12.2.1 - CURAND: 10.3.3	
•>		- CUFFT: 11.0.8 - CUSOLVER: 11.5.0 - CUSPARSE: 12.1.1	
≣		- CUPTI: 20.0.0 - NVML: 12.0.0+525.105.17	
*		Julia packages: – CUDA: 5.2.0 – CUDA_Driver_jll: 0.7.0+1 – CUDA_Runtime_jll: 0.11.1+0 – CUDA_Runtime_Discovery: 0.2.3	
		Toolchain: - Julia: 1.9.4 - LLVM: 14.0.6	
		Preferences: - CUDA_Runtime_jll.version: 12.2 - CUDA_Runtime_jll.local: true	
		1 device: 0: NVIDIA A100-PCIE-40GB (sm_80, 38.985 GiB / 40.000 GiB available)	
	[29]:	<pre># Phase-space coordinate pcoord = hcat(positions, velocities) > transpose # Phase-space class lrate = ensemble_hi - ensemble_lo # Lyapunov rate pclass = Array{Int16, 1}(undef, size(lrate))</pre>	
Sim	nle 💼		

Flux.jl Automatically Detects CUDA.jl [21]: using Flux, CUDA, Statistics, ProgressMeter [22]: CUDA.versioninfo() CUDA runtime 12.2, local installation CUDA driver 12.3 NVIDIA driver 525.105.17, originally for CUDA 12.2 CUDA libraries: - CUBLAS: 12.2.1 - CURAND: 10.3.3 - CUFFT: 11.0.8 Julia introspection is a - CUSOLVER: 11.5.0 - CUSPARSE: 12.1.1 powerful tool to detect / - CUPTI: 20.0.0 confirm system - NVML: 12.0.0+525.105.17 At NERSC Julia is configuration Julia packages: configured to - CUDA: 5.2.0 automatically detect the - CUDA_Driver_jll: 0.7.0+1 - CUDA_Runtime_jll: 0.11.1+0 system's CUDA runtime - CUDA Runtime Discovery: 0.2.3 Toolchain: - Julia: 1.9.4 - LLVM: 14.0.6 Preferences: - CUDA Runtime jll.version: 12.2 - CUDA_Runtime_jll.local: true 1 device:


0: NVIDIA A100-PCIE-40GB (sm_80, 38.985 GiB / 40.000 GiB available)

Define Input Data

0								Julia M	/L Exp	. (auto-	p:4	- Jupy	terLab							
J	ulia M	L Exp	perimen	ts.ipynb																
Fil	le Edi	t Vie	ew Run	Kernel	Git Tabs S	Settings	Help													
	+	× (e C	►► Code	() git									÷	Jul	ia 1.9.4 C	JNN-Ena	abled
	[29	pc # lr: pc fi pc	coord = 1 Phase-sp rate = er class = 1 class = 1 class [lra	bace class nsemble_h: Array{Int:	tions, velo s i – ensembl 16, 1}(unde .= 1	e_lo # L	yapund	ov rate												
	[30	N_ N_		3 = 8 nain(=> N_neuron	, tanh),														
)		N_neuron	=> N_class		if avai	ilable												
	[30	1	Dense(2 BatchNor Dense(8 NNlib.sc	=> 3), oftmax, # Total:	nh), 6 trainabl non-traina		# 16 # 27		neters, neters ers,			ō KiB.								
	[31				ulates para d <mark> ></mark> gpu)						s in:	tial d	output	is:						
	[31	0 0	.30174	0.260622	32}: 2 0.286916 2 0.244021 5 0.469063	0.23525	57	0.4019 0.3621 0.2359	114 0.	384997	7 0									
	[32	ta	rget = I	lux.oneho	el, we use otbatch(pcl	ass, [0,	1, 2]))			# 2	×N One	HotMa							

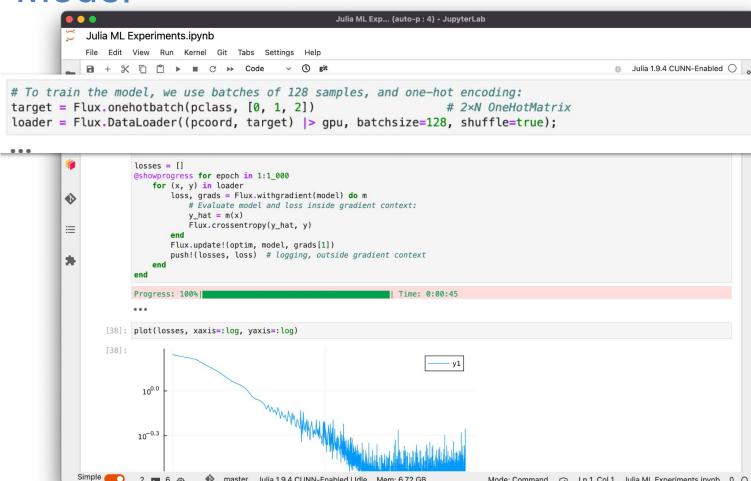
Define Input Data

Define a (simple) Neural Network Model

```
Julia ML Exp... (auto-p: 4) - JupyterLab
                                                Julia ML Experiments.ipynb
                                                File Edit View Run Kernel Git Tabs Settings
                                                                                                                                              Julia 1.9.4 CUNN-Enabled
                                                   [29]: # Phase-space coordinate
                                                        pcoord = hcat(positions, velocities) |> transpose
                                            0
                                                        # Phase-space class
                                                        lrate = ensemble hi - ensemble lo # Lyapunov rate
                            [30]: N coord = 2
                                    N class = 3
                                    N neuron = 8
Chain conveniently chains
                                    model = Chain(
together layers. Ingests a
                                         Dense(N_coord => N_neuron, tanh),
2D (position, velocity)
                                         BatchNorm(N neuron),
vector, outputs 3D class
                                         Dense(N neuron => N class),
                                         softmax
probability vector
                                    ) > qpu # move model to GPU, if available
                            [30]: Chain(
                                      Dense(2 \Rightarrow 8, tanh),
                                                                                         # 24 parameters
                                      BatchNorm(8),
                                                                                         # 16 parameters, plus 16
                                      Dense(8 \Rightarrow 3),
                                                                                         # 27 parameters
                                      NNlib.softmax,
                                                 # Total: 6 trainable arrays, 67 parameters,
                                                 # plus 2 non-trainable, 16 parameters, summarysize 1.266 KiB.
                                                    [32]: # To train the model, we use batches of 128 samples, and one-hot encoding:
                                                        target = Flux.onehotbatch(pclass, [0, 1, 2])
                                                                                                          # 2×N OneHotMatrix
                                                        loader - Elux Dataloader ((ncoord target) 15 any hatchsize-128 shuffle-true):
                                               Simple _____ 2 ___ 6 ___ A master Julia 19.4 CUNN-Enabled Lidla Martie 75 CB
                                                                                                                     Mode: Command 
  In 1 Col 1 Julia MI Experiments involu
```

Use |> gpu and |> cpu to Move Data

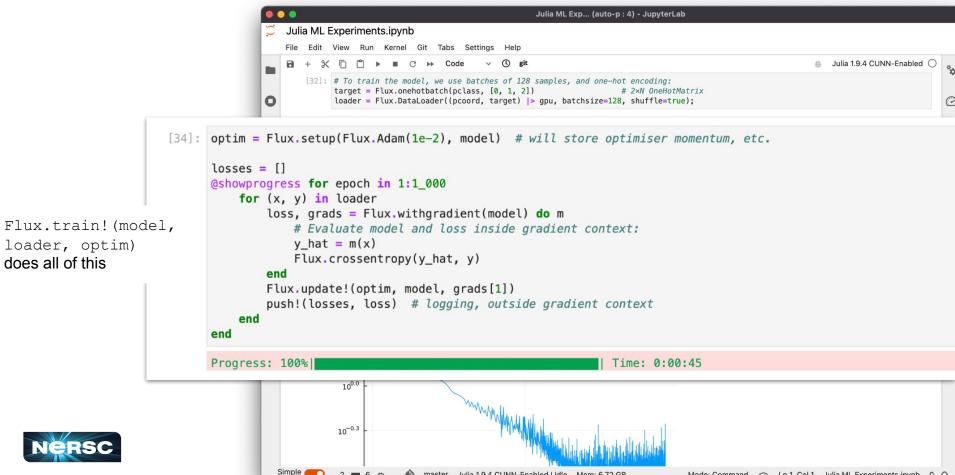
		Julia ML Exp (auto-p : 4) - JupyterLab
	💭 J	lulia ML Experiments.ipynb
	Fi	ile Edit View Run Kernel Git Tabs Settings Help
Column major inputs		BatchNorm(8), # 16 parameters, plus 16 el encapsulates parameters, randomly initialised. Its initial output is:
Column-major inputs. Model outputs the	out1 = mod	<pre>lel(pcoord > gpu) > cpu # 2×N Matrix{Float32}</pre>
likelihoods (columns) of each class	3×833 Matr 0.30174 0.291435 0.406825	rix{Float32}: 0.292602 0.286916 0.283165 0.401954 0.436592 0.44925 0.260622 0.244021 0.235257 0.362114 0.384997 0.391649 0.446776 0.469063 0.481578 0.235932 0.17841 0.159102
	Sim	target = Flux.onehotbatch(pclass, [0, 1, 2]) # 2×N OneHotMatrix lagter = Flux.Datalagter((ccord_target) > onu_batchsize=120_chuffla=trual) ple • • • • • • • • • • • • • • • • • • •


Train the Model

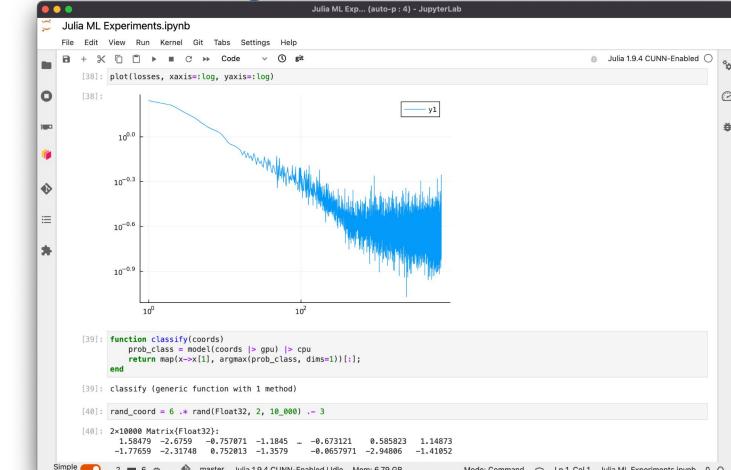
			Julia ML Exp (auto-p : 4) - JupyterLab	
()	Julia	ML E	Experiments.ipynb	
	File E	Edit	View Run Kernel Git Tabs Settings Help	
	8 +	*	[] ▷ ■ C → Code ∨ ③ git [] git [] ↓ □ C → Code ∨ ③ git [] ↓ □ C → Code ∨ ④ git [] ↓ □ C → Code ∨ ④ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑤ git [] ↓ □ C → Code ∨ ⑥ git [] ↓ □ C → Code ∨ ⑥ git [] ↓ □ C → Code ∨ ⑥ git [] ↓ □ C → Code ∨ ⑥ git [] ↓ □ C → Code ∨ ⑥ git [] ↓ □ C → Code ∨ ⑧ git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0 ⊕ Git [] ↓ □ C → Code ∨ 0	
0	[3		<pre># To train the model, we use batches of 128 samples, and one-hot encoding: target = Flux.onehotbatch(pclass, [0, 1, 2])</pre>	0

	L D	341:	<pre>optim = Flux.setup(Flux.Adam(1e-2), model) # will store optimiser momentum, etc.</pre>	ŧ
1			<pre>losses = [] @showprogress for epoch in 1:1_000 for (x, y) in loader</pre>	
∲ ≣			<pre># Evaluate model and loss inside gradient context: y_hat = m(x) Flux.crossentropy(y_hat, y) end</pre>	
*			<pre>Flux.update!(optim, model, grads[1]) push!(losses, loss) # logging, outside gradient context end end</pre>	
			Progress: 100%	

	6	38]:	<pre>plot(losses, xaxis=:log, yaxis=:log)</pre>	î
		38]:	10 ^{0.0}	
			10 ^{-0.3}	


Train the Model

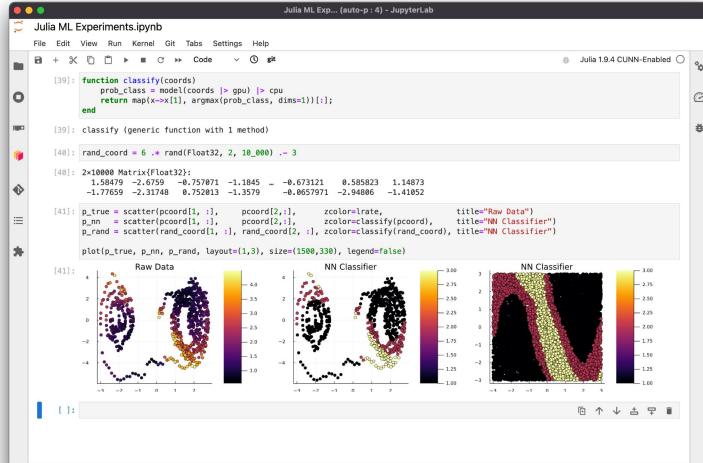
|> gpu also works with complex data types (tuples, vectors, structs, tuples of structs, ...)



Train the Model



We've Finished Building our AI Classifier



We've Finished Building our AI Classifier



ML Model Infers

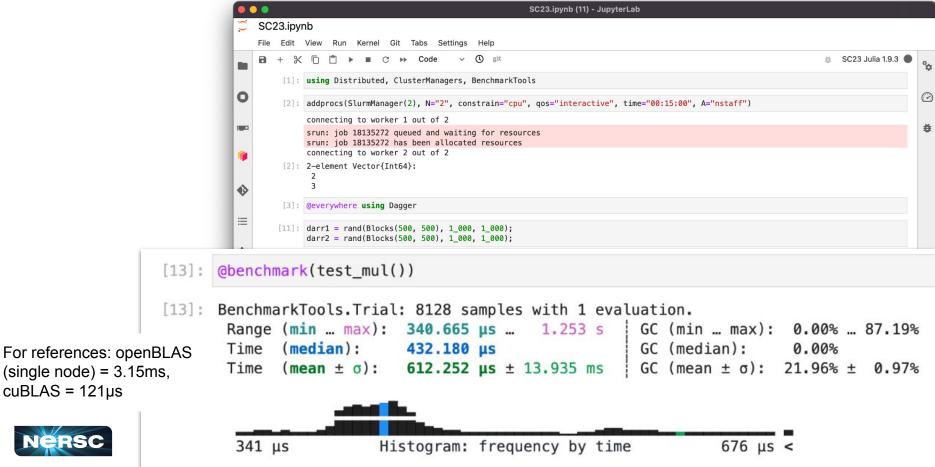
Simple _____ 2 ___ 6 ___ A master Julia 1.9.4 CUNNLERabled Lidle Mem: 6.79 CR

master Julia 1.9.4 CLININI-Enabled Lidle

Mode: Command
 Ln1 Col1 Julia MI Experiments involu

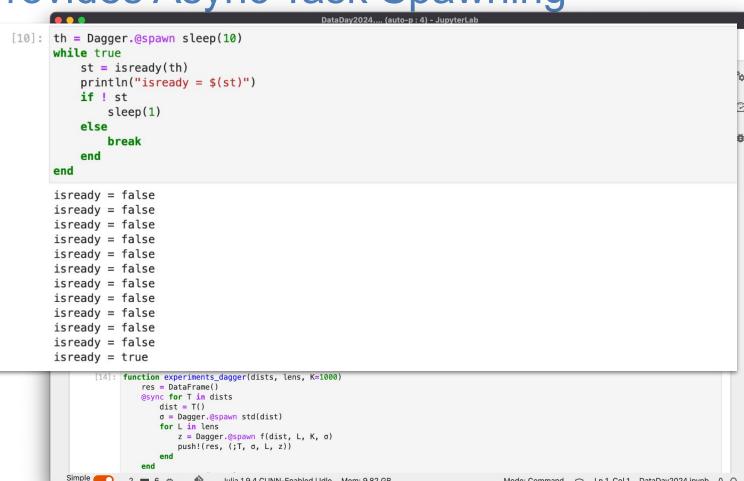
Using Dagger.jl To parallelize your workflow

Office of Science


•			SC23.ipynb (11) - JupyterLab		
()	SC2	23.ipy	nb		
	File	Edit	View Run Kernel Git Tabs Settings Help		
	8	+ %	C □ □ ► ■ C → Code ∨ ③ git	9.3 🌑	•
		[1]:	using Distributed, ClusterManagers, BenchmarkTools		
0		[2]:	addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")		(
			connecting to worker 1 out of 2		
1			srun: job 18135272 queued and waiting for resources srun: job 18135272 has been allocated resources		
ſ,			connecting to worker 2 out of 2		
		[2]:	2-element Vector{Int64}: 2		
•			3		
		[3]:	@everywhere using Dagger		
≣		[11]:	darr1 = rand(Blocks(500, 500), 1_000, 1_000); darr2 = rand(Blocks(500, 500), 1_000, 1_000);		
*		[12]:	<pre>function test_mul() darr1 * darr2 wait; end</pre>		
		[12]:	test_mul (generic function with 1 method)		
		[13]:	<pre>@benchmark(test_mul())</pre>		
		[13]:	BenchmarkTools.Trial:8128 samples with 1 evaluation.Range (min max):340.665 μ s 1.253 sGC (min max):Time (median):432.180 μ sGC (median):Time (mean $\pm \sigma$):612.252 μ s \pm 13.935 msGC (mean $\pm \sigma$):Contract21.96% \pm 0.97%		
			341 μs Histogram: frequency by time 676 μs <		
			Memory estimate: 167.05 KiB, allocs estimate: 3113.		
		[];			

		SC23.ipynb (11) - JupyterLab		
$\overline{\mathbf{C}}$	SC23.ipy	dr		
	File Edit	View Run Kernel Git Tabs Settings Help		
	8 + %	T T > C >> Code > O git	🐞 SC23 Julia 1.9.3 🌑	°
	[1]:	using Distributed, ClusterManagers, BenchmarkTools		
0	[2]:	<pre>addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")</pre>		\bigcirc
		connecting to worker 1 out of 2		
		srun: job 18135272 queued and waiting for resources srun: job 18135272 has been allocated resources		ŧ
]:	@eve	rywhere using Dagger		
1]:	darr	l = rand(Blocks(500, 500), 1_000, 1_000);		
	darr	2 = rand(Blocks(500, 500), 1_000, 1_000);		
_		darr1 * darr2		-
		wait; end		
	[12] •	test_mul (generic function with 1 method)		
	[13]:	<pre>@benchmark(test_mul())</pre>		
	[13];	BenchmarkTools.Trial: 8128 samples with 1 evaluation. Range (min max): 340.665 μs 1.253 s Time (median): 432.180 μs Time (mean ± σ): 612.252 μs ± 13.935 ms GC (mean ± σ): 21.96% ± 0.97%		
		341 μs Histogram: frequency by time 676 μs <		
		Memory estimate: 167.05 KiB, allocs estimate: 3113.		

		SC23.ipynb (11) - JupyterLab		
()	SC23.ipy	dı		
	File Edit	View Run Kernel Git Tabs Settings Help		
	B + %	$\square \square \models \blacksquare \bigcirc \square \models Code \lor \bigcirc git$	🎄 SC23 Julia 1.9.3 🔵	
	[1]:	using Distributed, ClusterManagers, BenchmarkTools		
0	[2]:	<pre>addprocs(SlurmManager(2), N="2", constrain="cpu", qos="interactive", time="00:15:00", A="nstaff")</pre>		
		connecting to worker 1 out of 2		
		srun: job 18135272 queued and waiting for resources srun: job 18135272 has been allocated resources		
1		connecting to worker 2 out of 2		
	[2]:	2-element Vector{Int64}:		
•		3		
•	[3]:	@everywhere using Dagger		
≣	[11].	darr1 = rand(Blocks(500, 500), 1_000, 1_000);		
	1	darr1 * darr2		
	end	wait;		
	end			
	end	BenchmarkTools.Trial: 8128 samples with 1 evaluation. Range (min max): 340.665 μs 1.253 s GC (min max): 0.00% 87.19% Time (median): 432.180 μs		


Dagger Provides Async Task Spawning

💭 Datal	Day2024.ipynb	
File E	Edit View Run Kernel Git Tabs Settings Help	
• • •	+ X [□ 1 [°]] ▶ ■ C >> Code ∨ O git	Julia 1.9.4 CUNN-Enabled
•	<pre>10]: th = Dagger.@spawn sleep(10) while true st = isready(th) println("isready = \$(st)")</pre>	
	<pre>if ! st sleep(1) else</pre>	
1	break end end	
•>	isready = false isready = false	
=	isready = false isready = false isready = false isready = false	
*	isready = false isready = false isready = false isready = false isready = false isready = false isready = true	
[:	<pre>11]: @everywhere function f(dist, len, reps, σ)</pre>	
	<pre>14]: function experiments_dagger(dists, lens, K=1000)</pre>	

Dagger Provides Async Task Spawning

Tasks start immediately. Spawning is non-blocking. This is called EagerThunk

Dagger Provides Async Task Spawning

			DataDav20	24 (auto-p : 4) - JupyterLab	
		ataDay2024.ipynb	DataDay20		
	, D Fil		Cit Tabe Settings Help		
			C → Code ∨ () git		Julia 1.9.4 CUNN-Enabled 🔘
	0	<pre>[10]: th = Dagger.@spawn s while true st = isready(th) println("isready if ! st</pre>)		
	♦	end isready = false isready = false		Track where the fu	nction runs
Functions to be used by @spawn need to be defined with @everywhere		v = Vector{Float64}	dist, len, reps, σ) (undef, len) <i># avoiding</i> dist, v)) for _ in 1 :re		
NERSC	Simo	res = DataFrame @sync for T in o dist = T() σ = Dagger.(for L in ler z = Dagg push!(re end	dists @spawn std(dist)	0.80 CP	and ∞ In 1 Cold. DataDay 2024 involution

Use Loop to Submit Tasks to Workers

File Edit	View Run Kernel Git Tabs Settings Help	
	% Ti Ii ▶ ■ C → Code ∨ O git	Julia 1.9.4 CUNN-Enab
•	<pre>@everywhere function f(dist, len, reps, σ) v = Vector{Float64}(undef, len) # avoiding allocations maximum(mean(rand!(dist, v)) for _ in 1:reps)/σ, myid() end</pre>	
[14]	<pre>function experiments_dagger(dists, lens, K=1000)</pre>	
1	res = DataFrame() @sync for T in dists dist = T() σ = Dagger.@spawn std(dist)	
•>	<pre>for L in lens z = Dagger.@spawn f(dist, L, K, σ) push!(res, (;T, σ, L, z)) end</pre>	
=	end res.z = fetch.(res.z) res.σ = fetch.(res.σ)	
*	res end	
[14]	experiments_dagger (generic function with 2 methods)	
[15]	<pre>dists = [Cosine, Epanechnikov, Laplace, Logistic, Normal, NormalCanon, PGeneralizedGaussian, SkewedExponentialPower, SymTriangularDist] lens = [10, 20, 50, 100, 200, 500]</pre>	

Use Loop to Submit Tasks to Workers

```
. . .
                                                                                                DataDay2024.... (auto-p: 4) - JupyterLab
                                               DataDay2024.ipynb
                                                   File Edit View Run Kernel Git Tabs Settings Help
                                                   < () git
                                                                                                                                                       Julia 1.9.4 CUNN-Enabled
                                  [14]: function experiments_dagger(dists, lens, K=1000)
                                              res = DataFrame()
                                              @sync for T in dists
                                                   dist = T()
                                                   \sigma = Dagger.@spawn std(dist)
                                                   for L in lens
@spawn is non-blocking,
                                                        z = Dagger.@spawn f(dist, L, K, \sigma)
fetch or using a variable
                                                        push!(res, (;T, σ, L, z))
are blocking
                                                   end
                                              end
                                              res.z = fetch.(res.z)
                                              res.\sigma = fetch.(res.\sigma)
                                              res
                                         end
                                                       [15]: dists = [
                                                               Cosine,
                                                               Epanechnikov,
                                                               Laplace,
                                                               Logistic,
                                                               Normal.
                                                               NormalCanon,
                                                               PGeneralizedGaussian.
                                                               SkewNormal,
                                                               SkewedExponentialPower,
                                                               SymTriangularDist
                                                            lens = [10, 20, 50, 100, 200, 500]
                                                            x = experiments_dagger(dists, lens)
                                                       [15] · 60×4 DataFrame
                                                                                                                                                            35 rows omitted
                                                 Simple 2 = 6 =
                                                                           Julia 194 CLINN-Enabled Lidle Mem: 982 CB
                                                                                                                                 Mode: Command 
  In 1 Col 1 DataDay 2024 inveh 0 0
```

Where Did All The Tasks Run?

•••	•						DataDay202	(auto-p : 4) - JupyterLab
💭 D	DataDay	2024.	ipynb					
Fi	ile Edit	View	Run Kerne	el Git Tak	os Settings	e Help		
	i 🖬 +	*	□ □ ►	C H	Code	~ (J git	Julia 1.9.4 CUNN-Enabled
0	[15]:		s = [Cosine, Epanechniko Laplace,	ν,				
			Logistic, Normal, NormalCanon					
1			PGeneralize SkewNormal, SkewedExpon	dGaussian, entialPowe				
♦]	SymTriangul = [10, 20,		200, 500]			
:=		× =	experiments	_dagger(di	sts, lens)			
	[15]:	60×4	DataFrame					35 rows omitted
*		Row	т		σ	L	z	
			UnionAll		Float64	Int64	Tuple	
		1	Cosine		0.361512	10	(0.879684, 2)	
		2	Cosine		0.361512	20	(0.738629, 3)	
		3	Cosine		0.361512	50	(0.420286, 7)	
		4	Cosine		0.361512	100	(0.331991, 9)	
		5	Cosine		0.361512	200	(0.199034, 11)	
		6	Cosine		0.361512	500	(0.151369, 6)	
		7	Epanechniko	v	0.447214	10	(0.939707, 5)	
		8	Epanechniko	v	0.447214	20	(0.664243, 10)	
		9	Epanechniko	v	0.447214	50	(0.484392, 6)	
		10	Epanechniko	v	0.447214	100	(0.287399, 8)	
		11	Epanechniko	v	0.447214	200	(0.250568, 11)	

Where Did

] lens	<pre>s = [Cosine, Epanechnikov, Laplace, Logistic, Normal, NormalCanon, PGeneralizedGaussian SkewNormal, SkewedExponentialPon SymTriangularDist = [10, 20, 50, 100 experiments_dagger(6)</pre>	wer, , 200, 500]				
	DataFrame					
	т	σ	L	z		
Row						
Row	UnionAll	Float64	Int64	Tuple	-	
		Float64 0.361512	Int64 10		-	
1	UnionAll			Tuple		
1	UnionAll Cosine	0.361512	10	Tuple (0.879684, 2)		All the tasks are distributed
1 2 3	UnionAll Cosine Cosine	0.361512 0.361512	10 20	Tuple (0.879684, 2) (0.738629, 3)		All the tasks are distributed over the Distributed.jl
1 2 3 4	UnionAll Cosine Cosine Cosine	0.361512 0.361512 0.361512	10 20 50	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7)		All the tasks are distributed over the Distributed.jl processors
1 2 3 4 5	UnionAll Cosine Cosine Cosine Cosine	0.361512 0.361512 0.361512 0.361512	10 20 50 100	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7) (0.331991, 9)		over the Distributed.jl
1 2 3 4 5	UnionAll Cosine Cosine Cosine Cosine Cosine	0.361512 0.361512 0.361512 0.361512 0.361512	10 20 50 100 200	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7) (0.331991, 9) (0.199034, 11)		over the Distributed.jl
1 2 3 4 5 6	UnionAll Cosine Cosine Cosine Cosine Cosine Epanechnikov	0.361512 0.361512 0.361512 0.361512 0.361512 0.361512	10 20 50 100 200 500	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7) (0.331991, 9) (0.199034, 11) (0.151369, 6)		over the Distributed.jl
1 2 3 4 5 6 7	UnionAll Cosine Cosine Cosine Cosine Cosine Cosine Epanechnikov	0.361512 0.361512 0.361512 0.361512 0.361512 0.361512 0.361512 0.447214	10 20 50 200 500 10	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7) (0.331991, 9) (0.199034, 11) (0.151369, 6) (0.939707, 5)		over the Distributed.jl
1 2 3 4 5 6 7 8	UnionAll Cosine Cosine Cosine Cosine Cosine Cosine Epanechnikov Epanechnikov	0.361512 0.361512 0.361512 0.361512 0.361512 0.361512 0.361512 0.447214	10 20 50 100 200 500 10 20	Tuple (0.879684, 2) (0.738629, 3) (0.420286, 7) (0.331991, 9) (0.199034, 11) (0.151369, 6) (0.939707, 5) (0.664243, 10)		over the Distributed.jl

Time to Accelerate the MC Sampler

Serial version:

- 1. Simulate N steps
- 2. Simulate ensemble.n independent trajectories
- 3. Aggregate data


```
times, positions, velocities, total_energies = baoab(
    energy, force, N*dt, dt,
    gamma, kBT, initial_position, initial_velocity;
    save_frequency=save_frequency, kwargs...
)
```

```
p_r = rand(ensemble.d, ensemble.n)
v_r = rand(ensemble.d, ensemble.n)
```

```
dtasks = Any[]
for i in 1:ensemble.n
    p = initial_position + p_r[i]
    v = initial_velocity + v_r[i]
    dtask = baoab(
        energy, force, ensemble.len*dt, dt,
        gamma, kBT, p + p_r[i], v + v_r[i];
        save_frequency=save_frequency, kwargs...
)
```

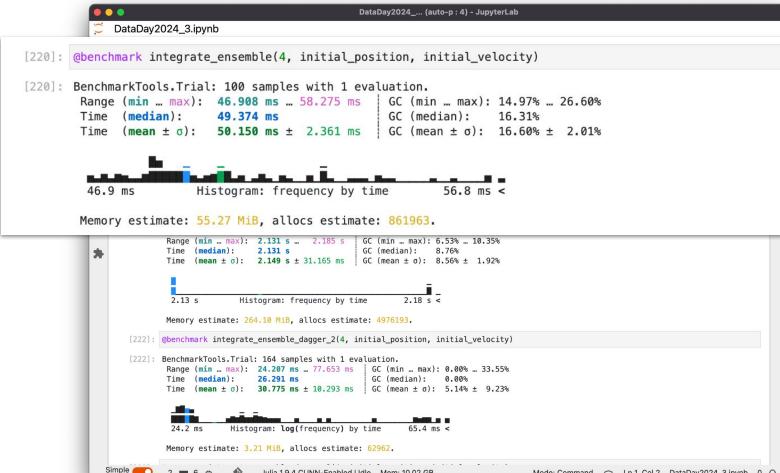
push!(dtasks, dtask)
end

```
ensemble_t = Array{T, 1}[]
ensemble_p = Array{T, 1}[]
for task in dtasks
    t_i, p_i, v_i, _ = task
    push!(ensemble_t, t .+ t_i)
    push!(ensemble_p, p_i)
end
```

Time to Accelerate the MC Sampler

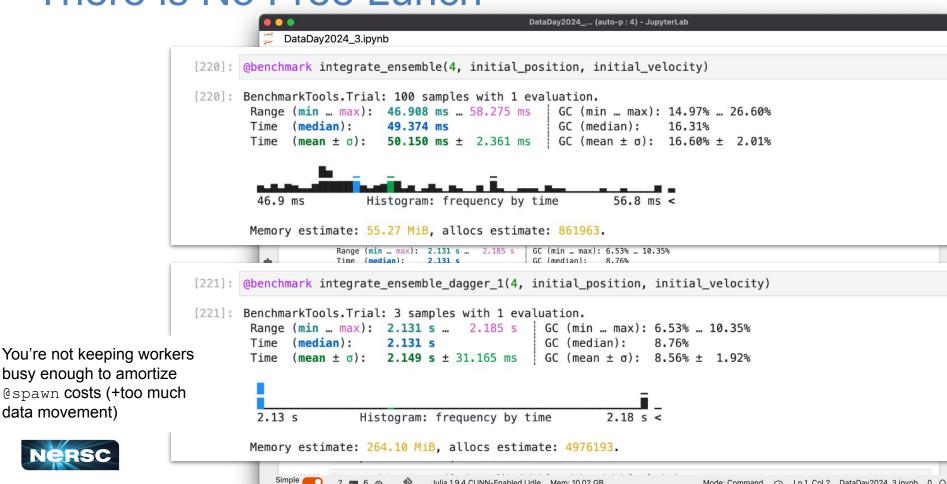
Naive parallelization:

- 1. Simulate N steps
- 2. Spawn ensemble.n independent trajectory simulation tasks
- 3. Fetch data


```
times, positions, velocities, total energies = baoab(
    energy, force, N*dt, dt,
    gamma, kBT, initial position, initial velocity;
    save frequency=save frequency, kwarqs...
p r = rand(ensemble.d, ensemble.n)
v_r = rand(ensemble.d, ensemble.n)
dtasks = Dagger.EagerThunk[]
@sync for i in 1:ensemble.n
    p = initial position + p r[i]
    v = initial_velocity + v_r[i]
    dtask = Dagger.@spawn baoab(
        energy, force, ensemble.len*dt, dt,
        gamma, kBT, p + p_r[i], v + v_r[i];
        save_frequency=save_frequency, kwargs...
    push!(dtasks, dtask)
end
ensemble_t = Array{T, 1}[]
ensemble_p = Array{T, 1}[]
for task in dtasks
    t_i, p_i, _, _ = fetch(task)
    push!(ensemble_t, t .+ t_i)
    push!(ensemble_p, p_i)
end
```

There is No Free Lunch

ay2024_3.ipynb	
X 🗇 🖞 ▶ ■ C → Code ∨ 🛈 git 🔅 Julia 1.9.4 CUNN-Enab	led 🔾
0]: @benchmark integrate_ensemble(4, initial_position, initial_velocity)	
Range (min max): 46.908 ms 58.275 ms GC (min max): 14.97% 26.60% Time (median): 49.374 ms GC (median): 16.31%	
Time (mean $\pm \sigma$): 50.150 ms \pm 2.361 ms GC (mean $\pm \sigma$): 16.60% \pm 2.01%	
and the second	
46.9 ms Histogram: frequency by time 56.8 ms <	
Memory estimate: 55.27 MiB, allocs estimate: 861963.	
1]: <pre>@benchmark integrate_ensemble_dagger_1(4, initial_position, initial_velocity)</pre>	
1]: BenchmarkTools.Trial: 3 samples with 1 evaluation.	
Range (min max): 2.131 s 2.185 s GC (min max): 6.53% 10.35% Time (median): 2.131 s GC (median): 8.76%	
Time (mean $\pm \sigma$): 2.149 s \pm 31.165 ms GC (mean $\pm \sigma$): 8.56% \pm 1.92%	
2.13 s Histogram: frequency by time 2.18 s <	
Memory estimate: 264.10 MiB, allocs estimate: 4976193.	
2]: @benchmark integrate_ensemble_dagger_2(4, initial_position, initial_velocity)	
2]: BenchmarkTools.Trial: 164 samples with 1 evaluation.	
Range (min max): 24.207 ms 77.653 ms GC (min max): 0.00% 33.55% Time (median): 26.291 ms GC (median): 0.00%	
Time (mean $\pm \sigma$): 30.775 ms ± 10.293 ms GC (mean $\pm \sigma$): 5.14% $\pm 9.23\%$	
24.2 ms Histogram: log(frequency) by time 65.4 ms <	
Memory estimate: 3.21 MiB, allocs estimate: 62962.	
E(22) [22] [22] [22]	<pre>2209: @benchmark integrate_ensemble(4, initial_position, initial_velocity) 2209: BenchmarkTools.Trial: 100 samples with 1 evaluation. Range (minmax): 46.90 ms _ 58.275 ms GC (minmax): 14.97% = 26.60% GC (median): 16.31% Time (mean ± 0): 50.150 ms ± 2.361 ms GC (mean ± 0): 16.60% ± 2.01% 46.9 ms Histogram: frequency by time 56.8 ms < Memory estimate: 55.27 HiB, allocs estimate: 861063. 2211: @benchmark integrate_ensemble_dagger_1(4, initial_position, initial_velocity) 2213: Benchmark j: 2.131 s _ 2.185 s GC (median): 8.76% Time (median): 2.131 s _ 2.185 s GC (mean ± 0): 8.56% ± 1.92% 2.13 s Histogram: frequency by time 2.18 s < Memory estimate: 264.10 HiB, allocs estimate: 4976193. 2221: @benchmark integrate_ensemble_dagger_2(4, initial_position, initial_velocity) 2221: #Benchmark integrate_ensemble_dagger_2(4, initial_position, initial_velocity) 2222: #Benchmark integrate_ensemble_dagger_2(4, initial_position, initial_vel</pre>



There is No Free Lunch

There is No Free Lunch

Keep Workers Busy Enough

Unit of work: simulate several trajectories (or make each trajectory longer).

Don't transfer data unnecessarily: We're only interested in how much trajectories spread out

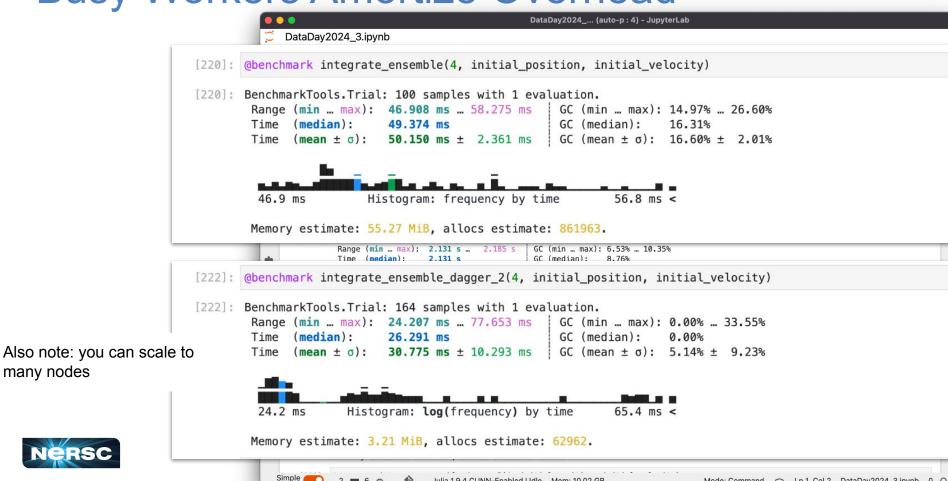

```
@everywhere function baoab_ensemble_batch(
        energy::Function, force::Function, t, dt, batch_size,
        gamma, kBT, initial_position::T, initial_velocity::T;
        save frequency = 3, ensemble = (len=10, d=Normal(0, 0.01), n=10),
        kwargs...
    ) where T <: Number
   p r = rand(ensemble.d, batch size)
   v r = rand(ensemble.d, batch size)
   dtasks = Anv[]
   for i in 1:batch_size
        p = initial position + p r[i]
        v = initial velocity + v r[i]
        dtask = baoab(
            energy, force, ensemble.len*dt, dt,
            gamma, kBT, p + p_r[i], v + v_r[i];
            save_frequency=save_frequency, kwargs...
        push!(dtasks, dtask)
    end
   hi p = T[]
   lo p = T[]
   for task in dtasks
        _, p_i, _, _ = task
        push!(hi p, maximum(p i))
        push!(lo p, minimum(p i))
    end
    return minimum(lo_p), maximum(hi_p)
end
```

Keep Workers Busy Enough

Improved parallelization:

- 1. Simulate N steps
- 2. Spawn batches of trajectory simulation tasks
- 3. Fetch only needed data


```
function baoab_ensemble_step_dagger_2(
    energy::Function, force::Function, t, N, dt,
    gamma, kBT, initial_position::T, initial_velocity::T;
    save_frequency = 3, ensemble = (len=10, d=Normal(0, 0.01), n=10),
    kwargs...
) where T <: Number</pre>
```


```
times, positions, velocities, total_energies = baoab(
    energy, force, N*dt, dt,
    gamma, kBT, initial_position, initial_velocity;
    save_frequency=save_frequency, kwargs...
```

```
)
```

end

```
dtasks = Dagger.EagerThunk[]
for i in 1:ensemble.n/ensemble.batch
    dtask = Dagger.@spawn baoab ensemble batch(
        energy, force, ensemble.len*dt, dt, ensemble.batch,
        gamma, kBT, initial position, initial velocity;
        save frequency=save frequency, kwargs...
    push!(dtasks, dtask)
end
hi p = T[]
lo p = T[]
for task in dtasks
    lo_p_i, hi_p_i = fetch(task)
    append!(hi_p, hi_p_i)
    append!(lo_p, lo_p_i)
end
return t .+ times, positions, velocities, total energies, (;p_spread=maximum(hi p)-minimum(lo p))
```

Busy Workers Amortize Overhead

Conclusions

Office of Science

Conclusion

- Julia provides a rich ecosystem to build performant distributed applications on HPC systems
 - Saw examples of Jupyter (IJulia.jl); Beginnings of sophisticated multi-node workflows (Distributed.jl, Dagger.jl); Programming GPUs (CUDA.jl); and Al (Flux.jl)
- Modern high-productivity design
- HPC vendor aware. Built on top of LLVM, with vendor backends (CUDA.jl, AMDGPU.jl, oneAPI.jl, etc)
- Provides interfaces to examine and manipulate what you're doing (including LLVM IR)

Noteworthy Julia Packages (for HPC)

- JulialO: <u>https://github.com/JulialO</u> JuliaData: <u>https://github.com/JuliaData</u> Collects many Julia packages around I/O and Data
- JuliaParallel: <u>https://github.com/JuliaParallel</u>
 Collects many Julia packages around distributed and parallel computing
- JuliaGPU: <u>https://github.com/JuliaGPU</u>
 Collects many Julia packages used for GPU computing

Noteworthy I/O Packages

- Pidfile.jl: Provides the linux/unix pidfile mechanism to hold mutex'es – useful for locking files
- HDF5.jl: HDF5-file support
- Zarr.jl: Julia Zarr (N-D array compressed data) support
- JLD.jl / JLD2.jl: Julia-native serialization support
- Tables.jl / DTables.jl / DistributedArrays.jl: arrays and tables build on distributed / CSV.jl: Tabular data support
- JuliaDB.jl: A distributed database for tables (implemented in pure Julia)

Noteworthy REST and Web Frameworks

- HTTP.jl: Send and receive HTTP requests
- Mux.jl / Oxygen.jl: Routing middleware for HTTP requests – Oxygen is newer and makes multithreading easier (considered an all-Julia replacement for FastAPI)
- **Genie.jl**: Fully-fledged web development framework (Julia's answer to Flask)

Noteworthy HPC Packages

"Traditional" HPC support: (<u>https://github.com/JuliaParallel</u>)

- **MPI.jl**: no explanation needed (it is CUDA/ROCM-aware)
- ClusterManagers.jl: manager HPC resources on the fly (also note SlurmClusterManager.jl and MPIClusterManagers.jl for HPC clusters)
- ImplicitGlobalGrid.jl / MPIArrays.jl: implement a global address space (using the Array interface) built on MPI.jl

Noteworthy HPC Packages

Tasking (producer-consumer) style HPC support: (<u>https://github.com/JuliaParallel</u>)

- Distributed.jl / Dagger.jl: task-based parallelism (like Dask and Ray)
- DTables.jl / DistributedArrays.jl: arrays and tables build on distributed

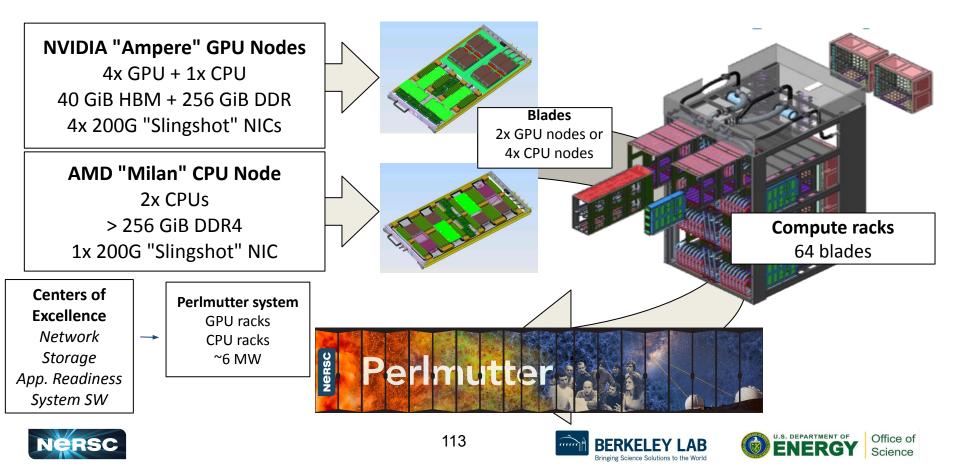
ML support: **Flux.jl** (like pytorch, but different)

Noteworthy HPC Packages

GPU Support:

(https://github.com/JuliaGPU)

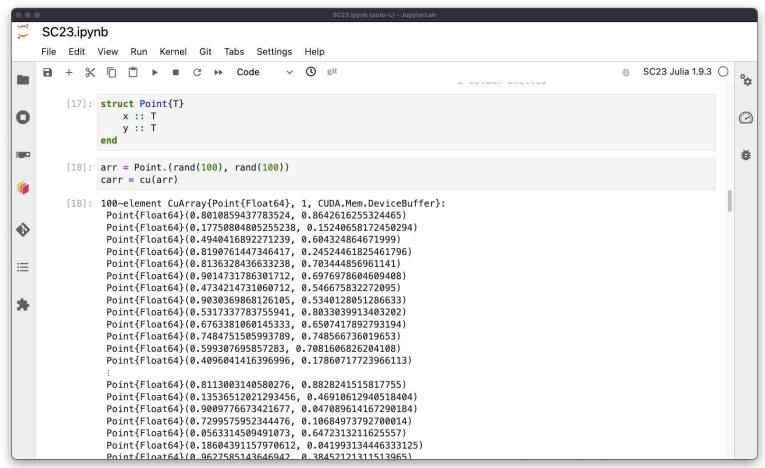
- CUDA.jl / AMDGPU.jl / oneAPI.jl: low-level GPU support (expose GPU Array interface + helper functions to manage GPU resources)
- KernelAbstractions.jl: lets you write portable code by writing portable kernels (a bit "like" Kokkos)
- + Many Many more



Extra Slides

Perlmutter system configuration

CUDA.jl provides detailed profiling interface


••	•					SC23.ipynb	(auto-L) - JupyterLab				
\mathbf{C}	SC2	23.ipyr	hb								
	File	Edit	View Run K	ernel Git Ta	ıbs Setti	ngs Help					
	8	+ %		■ C →	Code	✓ ♥ git				SC23 Julia 1.9.3 ()	°o
		[14]:	CUDA.@profil	le carr1 * ca	rr2						
0		[14]:	Profiler ran	n for 2.23 ms	, captu	ring 23 event	ts.				\odot
			Host_side a	stivity, call	ing (UD/	APTs took	1.96 ms (87.8	21% of the t	cace)		
180				civity. cat	ing cobr	A AFIS LOOK .	T.90 III2 (07.0				ë
			Time (%)	Time	Calls	Avg time	Min time	Max time	Name …		
1			29.29%	653.51 µs	1	653.51 μs	653.51 μs	653.51 μs	cuMemAllo …		
			18.15%	404.83 µs	1	404.83 µs	404.83 µs	404.83 µs	cudaEvent …		
			1.12%	25.03 µs	1	25.03 µs	25.03 µs	25.03 µs	cudaLaunc …		
			0.82%	18.36 µs	1	18.36 µs	18.36 µs	18.36 µs	cudaMemse …		
			0.44%	9.78 μs	2	4.89 μs	953.67 ns	8.82 µs	cudaOccup …		
			0.28%	6.2 µs	3	2.07 µs	476.84 ns	4.77 μs	cudaStrea …		
≣			0.26%	5.72 μs	1	5.72 μs	5.72 μs	5.72 μs	cudaEvent …		
			0.00%	0.0 ns	1	0.0 ns	0.0 ns	0.0 ns	cudaGetLa …		
*						and dee day out that out	I	1 c	olumn omitted		
			Device-side	activity: GF	PU was bu	usy for 160.2	22 µs (7.18%				
			Time (%)	Time	Calls	Avg time	Min time	Max time	Name		

Time (%)	Time	Calls	Avg time	Min time	Max time	Name …
7.09%	158.07 µs	1	158.07 µs	158.07 µs	158.07 μs	ampere_sg …
0.10%	2.15 µs	1	2.15 µs	2.15 µs	2.15 µs	[set devi …

1 column omitted

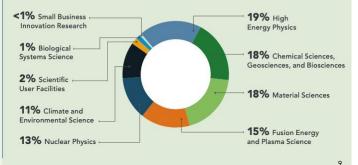
CUDA.jl is compatible with Structs

CUDA.jl is compatible with Structs

	SC23.ipynb (auto-L) - JupyterLab
	SC23.ipynb
	File Edit View Run Kernel Git Tabs Settings Help
Julia converts struct to	<pre>struct Point{T} x :: T y :: T</pre>
cuda-compatible type	end
[18]:	<pre>arr = Point.(rand(100), rand(100)) carr = cu(arr)</pre>
	Point{Floatb4}(0.801085943/783524, 0.8642616255324465)
•	Point{Float64}(0.17750804805255238, 0.15240658172450294)
	Point{Float64}(0.4940416892271239, 0.604324864671999) Point{Float64}(0.8190761447346417, 0.24524461825461796)
	Point{Float64}(0.9014731786301712, 0.6976978604609408)
*	Point{Float64}(0.4734214731060712, 0.546675832272095) Point{Float64}(0.9030369868126105, 0.5340128051286633) Point{Float64}(0.5317337783755941, 0.8033039913403202) Point{Float64}(0.6763381060145333, 0.6507417892793194) Point{Float64}(0.7484751505993789, 0.748566736019653) Point{Float64}(0.599307695857283, 0.7081606826204108)
	Point{Float64}(0.4096041416396996, 0.17860717723966113)
	Point{Float64}(0.8113003140580276, 0.8828241515817755) Point{Float64}(0.13536512021293456, 0.46910612940518404)
	Point{Float64}(0.9009776673421677, 0.047089614167290184)
	Point{Float64}(0.7299575952344476, 0.10684973792700014)
NERSC	Point{Float64}(0.0563314509491073, 0.6472313211625557) Point{Float64}(0.18604391157970612, 0.041993134446333125)
	Point{Float64}(0.16004391157970012, 0.0419951544405551257 Point{Float64}(0.9627585143646942, 0.38452121311513965)

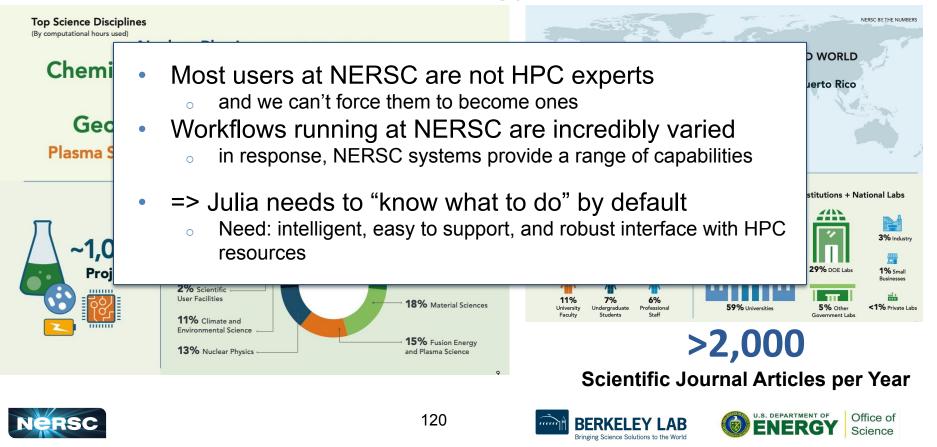
• •		DataDay2024 (auto-p : 4) - JupyterLab	
()	DataDay2	024.ipynb	
F	File Edit	View Run Kernel Git Tabs Settings Help	
•	ĕ 🖬 +	X Ti Ii ▶ ■ C → Code ∨ O git	Julia 1.9.4 CUNN-Enabled (
	[1]:	using Distributed	
0	[2]:	addprocs(10)	
	[2]:	10-element Vector{Int64}:	
		2 3	
1		4 5	
		6	
		7 8	
		9 10	
≔		11	
*	[3]:	<pre>@everywhere using Dagger, Random, Distributions, StatsBase, DataFrames</pre>	
		WARNING: using Dagger.In in module Main conflicts with an existing identifier. WARNING: using Dagger.Out in module Main conflicts with an existing identifier.	
	[10]:	<pre>th = Dagger.@spawn sleep(10) while true st = isready(th) println("isready = \$(st)") if ! st sleep(1) else break end end</pre>	
	mple	isready = false isready = false Mode Cou	mmand C. In 1 Col 1 DataDay2024 invnh 0

Why does NERSC care about Julia?


Office of Science

NERSC is the mission HPC and data facility for the U.S Department of Energy Office of Science

Breakdown of Compute Used by DOE Program


Scientific Journal Articles per Year

NERSC is the mission HPC and data facility for the U.S Department of Energy Office of Science

