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“Julia + Jupyter + GPU = ⚗🔬🧬🥰”
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Credit and Disclaimers
None of this would be possible without:
● Tim Bersard, Valentin Churavy, Julian Samaroo (MIT Julia Lab) + Anton Smirnov 

(AMD) + Carsten Bauer (NHR, PC2)
○ Providing the Infrastructure

● Marius Millea (UC Davis) + Mark Hirsbrunner (LBNL*) + William Godoy, 
Pedro Valero Lara (OLCF)

○ Inspiring applications
● The Julia for HPC working group

○ https://github.com/JuliaParallel 
○ Meets monthly on Zoom (cf. https://julialang.org/community/ ) and is very active on Discord
○ Julia for HPC BoF at SC and JuliaCon

● Soham Ghosh (NERSC)
○ Exploring AI applications: just-in-time AI, AI for science, UQ

Disclaimer:
● I work on Perlmutter, but can be (and has been) easily applied to HPC more broadly.

https://github.com/JuliaParallel
https://julialang.org/community/
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Overview

1. Julia in 60s
2. Julia + Jupyter as an interactive workflow engine
3. Network Discovery
4. Programming GPUs
5. Inspiration: Particles in Potentials
6. Machine Learning using Flux.jl
7. Using Dagger.jl to parallelize your workflow



  

Julia in 60s
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Julia is a High-Productivity Language

● It has all the modern HP features (rich stdlib, gc, …) 
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Julia is a High-Productivity Language

● It has all the modern HP features (rich stdlib, gc, …)
● + a powerful REPL
● + a comprehensive package manager (which integrates 

with system software) 
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Julia has LLVM under the Hood
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Julia has LLVM under the Hood

Julia data types are 
binary-compatible with C

@ccall equivalent to c 
function call 
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Julia has LLVM under the Hood

@code_llvm exposes the 
LLVM IR for debug 
purposes
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Julia has a Powerful Type System 
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Julia has a Powerful Type System 
Structured data types are 
also compatible with C

{T<:Number} represents a 
type template for all types 
inheriting from Number
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Julia has a Powerful Type System 

{T<:Number} represents a 
type template for all types 
inheriting from Number
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Julia has a Powerful Type System 

Julia has multiple dispatch: 
a function can have several 
implementations (methods) 
depending on the input 
types



  

Julia + Jupyter as an interactive workflow 
engine
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DOE SC User Requirements Are Evolving
Users require support for

• End-to-end DOE SC Workflows involving 
multiple facilities

• New modes of scientific discovery through the 
integration of simulation & modeling, AI and 
experiment.

• Interactive/Real-Time Workflows
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Why NERSC Cares about Julia Workflows

Workflows

C/C++ Python

Julia

pip install …
Rapid scripting 
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Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4
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Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4

Jupyter

Distributed.jl

CUDA.jl CUDA.jl CUDA.jl CUDA.jl

Vendor SW Vendor SW Vendor SW Vendor SW

User SW User SW User SW User SW

User WF

Dagger.jl

Possibly also 
login node, or 
head node

JACC.jl and 
KernelAbstractions.jl 
provide portability
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Cluster Managers: Interaction with Slurm 
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Cluster Managers: Interaction with Slurm 

Request two 
cpu nodes

ElasticManager 
can be used instead 
of SlurmManager 
to manually manage 
workers from within 
an allocation
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Cluster Managers: Interaction with Slurm 

Get hostnames 
and pids from 
each worker
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Cluster Managers: Interaction with Slurm 
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Distributed.jl supports basic workflows

Basic task: count number of heads from 2x10^8 fair coin tosses.
● Serial implementation:

for loop + increment counter
● Parallel (distributed) implementation:

@distributed for loop + reduction
(summation) on counter

● Most Julia data types are trivial to
serialize and communicate over network
(the users doesn’t have to do anything
“special” to enable this)
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Performance Gains from Distributing Work
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Performance Gains from Distributing Work
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Performance Gains from Distributing Work

Distributing work over 2 
nodes results in a 2x 
performance increase
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Tangent: Hybrid CPU/GPU Jobs
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Tangent: Hybrid CPU/GPU Jobs
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Tangent: Hybrid CPU/GPU Jobs
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Tangent: Hybrid CPU/GPU Jobs
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Tangent: Hybrid CPU/GPU Jobs



  

Tangent: Network Discovery
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Workflow Support Story

• Unexpected
poor performance
and scaling

• User application
100x slower 
on Perlmutter
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Perlmutter is a Heterogeneous System
Partition Node

s
CPU RAM GPU NIC

GPU 1536 1x AMD EPYC 7763 256GB 4x NVIDIA A100 (40GB) 4x HPE Slingshot 11

256 1x AMD EPYC 7763 256GB 4x NVIDIA A100 (80GB) 4x HPE Slingshot 11

CPU 3072 2x AMD EPYC 7763 512GB – 1x HPE Slingshot 11

Login 40 1x AMD EPYC 7713 512GB 4x NVIDIA A100 (40GB) –

Large 
Memory

4 1x AMD EPYC 7713 1TB 4x NVIDIA A100 (40GB) 1x HPE Slingshot 11

• Each GPU node has 4 NICs
o 1 NIC and 1 GPU per host bridge  

• Each CPU node has 1 NIC

https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
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Eg. GPU Node Topology
Hwloc.Object: Machine
└─ Hwloc.Object: Package [L#0 P#0]
   ├─ Hwloc.Object: Group
   │  ├─ Hwloc.Object: NUMANode
   │  └─ Hwloc.Object: Bridge [HostBridge]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
   │     │  └─ Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
   │     │     └─ Hwloc.Object: OS_Device [Net "hsn0"]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
   │     │  └─ Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
   │     │     └─ Hwloc.Object: OS_Device [Net "nmn0"]
...

   ├─ Hwloc.Object: Group
   │  ├─ Hwloc.Object: NUMANode
   │  └─ Hwloc.Object: Bridge [HostBridge]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
   │     │  └─ Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
   │     │     └─ Hwloc.Object: OS_Device [Net "hsn1"]
...

   ├─ Hwloc.Object: Group
   │  ├─ Hwloc.Object: NUMANode
   │  └─ Hwloc.Object: Bridge [HostBridge]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
   │     │  └─ Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
   │     │     └─ Hwloc.Object: OS_Device [Net "hsn2"]
...

   └─ Hwloc.Object: Group
      ├─ Hwloc.Object: NUMANode
      └─ Hwloc.Object: Bridge [HostBridge]
         ├─ Hwloc.Object: Bridge [PCIBridge]
         │  └─ Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
         │     └─ Hwloc.Object: OS_Device [Net "hsn3"]
...
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Eg. GPU Node Topology
Hwloc.Object: Machine
└─ Hwloc.Object: Package [L#0 P#0]
   ├─ Hwloc.Object: Group
   │  ├─ Hwloc.Object: NUMANode
   │  └─ Hwloc.Object: Bridge [HostBridge]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
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   │     │     └─ Hwloc.Object: OS_Device [Net "hsn1"]
...

   ├─ Hwloc.Object: Group
   │  ├─ Hwloc.Object: NUMANode
   │  └─ Hwloc.Object: Bridge [HostBridge]
   │     ├─ Hwloc.Object: Bridge [PCIBridge]
   │     │  └─ Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
   │     │     └─ Hwloc.Object: OS_Device [Net "hsn2"]
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   └─ Hwloc.Object: Group
      ├─ Hwloc.Object: NUMANode
      └─ Hwloc.Object: Bridge [HostBridge]
         ├─ Hwloc.Object: Bridge [PCIBridge]
         │  └─ Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
         │     └─ Hwloc.Object: OS_Device [Net "hsn3"]
...
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Topo distance to NIC

• Finding the right NIC is 
easy now: pick the 
(non-nmn) interface with 
lowest tree distance 
between your core and 
the PCI device

213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn0"]
213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "nmn0"]
47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn1"]
379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn2"]
379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn3"]
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Topo distance to NIC

• Finding the right NIC is 
easy now: pick the 
(non-nmn) interface with 
lowest tree distance 
between your core and 
the PCI device

213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn0"]
213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "nmn0"]
47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn1"]
379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn2"]
379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn3"]

This one!
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Future

• This is pre-alpha, so far only deployed at NERSC
o Looking for folks to test this at NERSC and on their favorite HPC 

systems

• Distributed.jl to use distance between NIC and 
Core (on Hwloc tree) to select preferred tree NIC
o JuliaParallel/NetworkInterfaceControllers.jl

https://github.com/JuliaParallel/NetworkInterfaceControllers.jl


  

Programming GPUs

8
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CUDA.jl: Interfacing with Nvidia GPUs
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CUDA.jl: Interfacing with Nvidia GPUs

Basic example: 
1000x1000 matmul 
using OpenBLAS
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CUDA.jl: Interfacing with Nvidia GPUs

Copy arrays to device



47

CUDA.jl: Interfacing with Nvidia GPUs

Using cuBLAS to 
perform matmul 
decreases run time from 
3.15ms to 121μs (26x)
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Write Your Own CUDA Kernels in Julia
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Write Your Own CUDA Kernels in Julia

Define kernels using 
Julia functions
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Write Your Own CUDA Kernels in Julia

Launch kernel using the 
@cuda macro
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CUDA.jl provides detailed profiling interface
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(advanced) LLVM + Julia

Julia provides 
interfaces to the 
LLVM backend. 

Eg.:
● loopinfo
● llvmcall



  

Inspiration: Particles in Potentials

10
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Transition Rates between Potential Minima
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Transition Rates between Potential Minima

This is a 
highly-simplified (1D) 
model for loads of 
interesting science: 
chemical reactions; 
protein conformations; 
etc 
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Integrating SDEs
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Integrating SDEs

Julia makes RNG easy!
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Integrating SDEs

Define SDE algorithm
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Integrating SDEs

SDE algorithms can be 
long and complex!
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Transitions are Rare!
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Transitions are Rare!

Often you will 100s of 
millions of data points in 
order to collect a few 
thousand transitions
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Solution Strategy: Local Monte-Carlo Sampling
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Solution Strategy: Local Monte-Carlo Sampling
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Solution Strategy: Local Monte-Carlo Sampling

For every time step, run a 
short simulation with 
slightly different starting 
conditions
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Solution Strategy: Local Monte-Carlo Sampling

Borderline state

Stable state



66

Solution Strategy: Adaptive Algorithms
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Solution Strategy: Adaptive Algorithms



68

Start Mapping a Phase Space
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Start Mapping a Phase Space



  

Machine learning using Flux.jl

15
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Flux.jl Automatically Detects CUDA.jl
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Flux.jl Automatically Detects CUDA.jl

Julia introspection is a 
powerful tool to detect / 
confirm system 
configuration At NERSC Julia is 

configured to 
automatically detect the 
system’s CUDA runtime
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Define Input Data
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Define Input Data

Classify point in phase 
space based on local MC 
sample’s spread rate 
(~Lyapunov rate)
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Define a (simple) Neural Network Model

Chain conveniently chains 
together layers. Ingests a 
2D (position, velocity) 
vector, outputs 3D class 
probability vector
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Use |> gpu and |> cpu to Move Data

Column-major inputs. 
Model outputs the 
likelihoods (columns) of 
each class
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Train the Model
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Train the Model

|> gpu also works with 
complex data types 
(tuples, vectors, structs, 
tuples of structs, …)
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Train the Model

Flux.train!(model, 
loader, optim) 
does all of this 
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We’ve Finished Building our AI Classifier
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We’ve Finished Building our AI Classifier
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ML Model Infers 



83



  

Using Dagger.jl To parallelize your 
workflow 

20
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Dagger.jl: Easy work distribution
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Dagger.jl: Easy work distribution
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Dagger.jl: Easy work distribution
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Dagger.jl: Easy work distribution

For references: openBLAS 
(single node) = 3.15ms, 
cuBLAS = 121μs 
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Dagger Provides Async Task Spawning
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Dagger Provides Async Task Spawning

Tasks start immediately.
Spawning is non-blocking.
This is called EagerThunk
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Dagger Provides Async Task Spawning

Functions to be used by 
@spawn need to be defined 
with @everywhere

Track where the function runs
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Use Loop to Submit Tasks to Workers
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Use Loop to Submit Tasks to Workers

@spawn is non-blocking, 
fetch or using a variable 
are blocking
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Where Did All The Tasks Run?



95

Where Did All The Tasks Run?

All the tasks are distributed 
over the Distributed.jl 
processors
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Time to Accelerate the MC Sampler

Serial version:
1. Simulate N steps
2. Simulate ensemble.n

independent trajectories
3. Aggregate data
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Time to Accelerate the MC Sampler

Naive parallelization:
1. Simulate N steps
2. Spawn ensemble.n

independent trajectory
simulation tasks

3. Fetch data
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There is No Free Lunch
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There is No Free Lunch
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There is No Free Lunch

You’re not keeping workers 
busy enough to amortize 
@spawn costs (+too much 
data movement)
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Keep Workers Busy Enough

Unit of work: simulate several
trajectories (or make each trajectory
longer).

Don’t transfer data unnecessarily:
We’re only interested in how much
trajectories spread out 
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Keep Workers Busy Enough

Improved parallelization:

1. Simulate N steps
2. Spawn batches of

trajectory simulation
tasks

3. Fetch only needed
data
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Busy Workers Amortize Overhead

Also note: you can scale to 
many nodes



  

Conclusions

25
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Conclusion

● Julia provides a rich ecosystem to build performant 
distributed applications on HPC systems
○ Saw examples of Jupyter (IJulia.jl); Beginnings of 

sophisticated multi-node workflows (Distributed.jl, 
Dagger.jl); Programming GPUs (CUDA.jl); and AI (Flux.jl)

● Modern high-productivity design
● HPC vendor aware. Built on top of LLVM, with vendor 

backends (CUDA.jl, AMDGPU.jl, oneAPI.jl, etc)
● Provides interfaces to examine and manipulate what 

you’re doing (including LLVM IR)
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Noteworthy Julia Packages (for HPC)

• JuliaIO: https://github.com/JuliaIO
JuliaData: https://github.com/JuliaData 
Collects many Julia packages around I/O and Data

• JuliaParallel: https://github.com/JuliaParallel 
Collects many Julia packages around distributed and 
parallel computing

• JuliaGPU: https://github.com/JuliaGPU 
Collects many Julia packages used for GPU computing

https://github.com/JuliaIO
https://github.com/JuliaData
https://github.com/JuliaParallel
https://github.com/JuliaGPU
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Noteworthy I/O Packages

• Pidfile.jl: Provides the linux/unix pidfile mechanism to 
hold mutex’es – useful for locking files

• HDF5.jl: HDF5-file support
• Zarr.jl: Julia Zarr (N-D array compressed data) support
• JLD.jl / JLD2.jl: Julia-native serialization support
• Tables.jl / DTables.jl / DistributedArrays.jl: arrays and 

tables build on distributed / CSV.jl: Tabular data support

• JuliaDB.jl: A distributed database for tables (implemented 
in pure Julia)
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Noteworthy REST and Web Frameworks 

• HTTP.jl: Send and receive HTTP requests
• Mux.jl / Oxygen.jl: Routing middleware for HTTP 

requests – Oxygen is newer and makes multithreading 
easier (considered an all-Julia replacement for FastAPI)

• Genie.jl: Fully-fledged web development framework 
(Julia’s answer to Flask)
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Noteworthy HPC Packages

“Traditional” HPC support:
(https://github.com/JuliaParallel)
• MPI.jl: no explanation needed (it is CUDA/ROCM-aware)
• ClusterManagers.jl: manager HPC resources on the fly 

(also note SlurmClusterManager.jl and 
MPIClusterManagers.jl for HPC clusters)

• ImplicitGlobalGrid.jl / MPIArrays.jl: implement a global 
address space (using the Array interface) built on MPI.jl

https://github.com/JuliaParallel
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Noteworthy HPC Packages

Tasking (producer-consumer) style HPC support:
(https://github.com/JuliaParallel)
• Distributed.jl / Dagger.jl: task-based parallelism (like 

Dask and Ray)
• DTables.jl / DistributedArrays.jl: arrays and tables build 

on distributed

ML support: Flux.jl (like pytorch, but different)

https://github.com/JuliaParallel
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Noteworthy HPC Packages

GPU Support:
(https://github.com/JuliaGPU)
• CUDA.jl / AMDGPU.jl / oneAPI.jl: low-level GPU support 

(expose GPU Array interface + helper functions to 
manage GPU resources)

• KernelAbstractions.jl: lets you write portable code by 
writing portable kernels (a bit “like” Kokkos)

• + Many Many more

https://github.com/JuliaGPU


  

Extra Slides
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AMD "Milan" CPU Node
2x CPUs 

> 256 GiB DDR4
1x 200G "Slingshot" NIC

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU

40 GiB HBM + 256 GiB DDR
4x 200G "Slingshot" NICs 

Perlmutter system configuration

Compute racks
64 blades

Blades
2x GPU nodes or 

4x CPU nodes

Centers of 
Excellence
Network
Storage

App. Readiness
System SW

Perlmutter system
GPU racks
CPU racks

~6 MW
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CUDA.jl provides detailed profiling interface
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CUDA.jl is compatible with Structs
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CUDA.jl is compatible with Structs

Julia converts struct to 
cuda-compatible type 
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Why does NERSC care about Julia?
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NERSC is the mission HPC and data facility for the 
U.S  Department of Energy Office of Science

>2,000 
Scientific Journal Articles per Year
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NERSC is the mission HPC and data facility for the 
U.S  Department of Energy Office of Science

>2,000 
Scientific Journal Articles per Year

• Most users at NERSC are not HPC experts
o and we can’t force them to become ones

• Workflows running at NERSC are incredibly varied
o in response, NERSC systems provide a range of capabilities

• => Julia needs to “know what to do” by default
o Need: intelligent, easy to support, and robust interface with HPC 

resources


