
1

HPC-Friendly Workflows
in Julia

“Julia + Jupyter + GPU = ⚗🔬🧬🥰”
(phrase borrowed from Marius Millea)

Johannes Blaschke
Data Science Engagement Group

NERSC, LBNL

2

Credit and Disclaimers
None of this would be possible without:
● Tim Bersard, Valentin Churavy, Julian Samaroo (MIT Julia Lab) + Anton Smirnov

(AMD) + Carsten Bauer (NHR, PC2)
○ Providing the Infrastructure

● Marius Millea (UC Davis) + Mark Hirsbrunner (LBNL*) + William Godoy,
Pedro Valero Lara (OLCF)

○ Inspiring applications
● The Julia for HPC working group

○ https://github.com/JuliaParallel
○ Meets monthly on Zoom (cf. https://julialang.org/community/) and is very active on Discord
○ Julia for HPC BoF at SC and JuliaCon

● Soham Ghosh (NERSC)
○ Exploring AI applications: just-in-time AI, AI for science, UQ

Disclaimer:
● I work on Perlmutter, but can be (and has been) easily applied to HPC more broadly.

https://github.com/JuliaParallel
https://julialang.org/community/

3

Overview

1. Julia in 60s
2. Julia + Jupyter as an interactive workflow engine
3. Network Discovery
4. Programming GPUs
5. Inspiration: Particles in Potentials
6. Machine Learning using Flux.jl
7. Using Dagger.jl to parallelize your workflow

Julia in 60s

5

Julia is a High-Productivity Language

● It has all the modern HP features (rich stdlib, gc, …)

6

Julia is a High-Productivity Language

● It has all the modern HP features (rich stdlib, gc, …)
● + a powerful REPL

7

Julia is a High-Productivity Language

● It has all the modern HP features (rich stdlib, gc, …)
● + a powerful REPL
● + a comprehensive package manager (which integrates

with system software)

8

Julia has LLVM under the Hood

9

Julia has LLVM under the Hood

Julia data types are
binary-compatible with C

@ccall equivalent to c
function call

10

Julia has LLVM under the Hood

@code_llvm exposes the
LLVM IR for debug
purposes

11

Julia has a Powerful Type System

12

Julia has a Powerful Type System
Structured data types are
also compatible with C

{T<:Number} represents a
type template for all types
inheriting from Number

13

Julia has a Powerful Type System

{T<:Number} represents a
type template for all types
inheriting from Number

14

Julia has a Powerful Type System

Julia has multiple dispatch:
a function can have several
implementations (methods)
depending on the input
types

Julia + Jupyter as an interactive workflow
engine

16

DOE SC User Requirements Are Evolving
Users require support for

• End-to-end DOE SC Workflows involving
multiple facilities

• New modes of scientific discovery through the
integration of simulation & modeling, AI and
experiment.

• Interactive/Real-Time Workflows

17

Why NERSC Cares about Julia Workflows

Workflows

C/C++ Python

Julia

pip install …
Rapid scripting

18

Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4

19

Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4

User SW User SW User SW User SW

User WF

20

Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4

Jupyter

Distributed.jl

CUDA.jl CUDA.jl CUDA.jl CUDA.jl

Vendor SW Vendor SW Vendor SW Vendor SW

User SW User SW User SW User SW

User WF

Dagger.jl

21

Building a Distributed Julia Application (without MPI)

WF node

High-speed network

Compute 1 Compute 2 Compute 3 Compute 4

Jupyter

Distributed.jl

CUDA.jl CUDA.jl CUDA.jl CUDA.jl

Vendor SW Vendor SW Vendor SW Vendor SW

User SW User SW User SW User SW

User WF

Dagger.jl

Possibly also
login node, or
head node

JACC.jl and
KernelAbstractions.jl
provide portability

22

Cluster Managers: Interaction with Slurm

23

Cluster Managers: Interaction with Slurm

Request two
cpu nodes

ElasticManager
can be used instead
of SlurmManager
to manually manage
workers from within
an allocation

24

Cluster Managers: Interaction with Slurm

Get hostnames
and pids from
each worker

25

Cluster Managers: Interaction with Slurm

26

Distributed.jl supports basic workflows

Basic task: count number of heads from 2x10^8 fair coin tosses.
● Serial implementation:

for loop + increment counter
● Parallel (distributed) implementation:

@distributed for loop + reduction
(summation) on counter

● Most Julia data types are trivial to
serialize and communicate over network
(the users doesn’t have to do anything
“special” to enable this)

27

Performance Gains from Distributing Work

28

Performance Gains from Distributing Work

29

Performance Gains from Distributing Work

Distributing work over 2
nodes results in a 2x
performance increase

30

Tangent: Hybrid CPU/GPU Jobs

31

Tangent: Hybrid CPU/GPU Jobs

32

Tangent: Hybrid CPU/GPU Jobs

33

Tangent: Hybrid CPU/GPU Jobs

34

Tangent: Hybrid CPU/GPU Jobs

Tangent: Network Discovery

36

Workflow Support Story

• Unexpected
poor performance
and scaling

• User application
100x slower
on Perlmutter

37

Perlmutter is a Heterogeneous System
Partition Node

s
CPU RAM GPU NIC

GPU 1536 1x AMD EPYC 7763 256GB 4x NVIDIA A100 (40GB) 4x HPE Slingshot 11

256 1x AMD EPYC 7763 256GB 4x NVIDIA A100 (80GB) 4x HPE Slingshot 11

CPU 3072 2x AMD EPYC 7763 512GB – 1x HPE Slingshot 11

Login 40 1x AMD EPYC 7713 512GB 4x NVIDIA A100 (40GB) –

Large
Memory

4 1x AMD EPYC 7713 1TB 4x NVIDIA A100 (40GB) 1x HPE Slingshot 11

• Each GPU node has 4 NICs
o 1 NIC and 1 GPU per host bridge

• Each CPU node has 1 NIC

https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html

38

Eg. GPU Node Topology
Hwloc.Object: Machine
└─ Hwloc.Object: Package [L#0 P#0]
 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn0"]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "nmn0"]
...

 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn1"]
...

 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn2"]
...

 └─ Hwloc.Object: Group
 ├─ Hwloc.Object: NUMANode
 └─ Hwloc.Object: Bridge [HostBridge]
 ├─ Hwloc.Object: Bridge [PCIBridge]
 │ └─ Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
 │ └─ Hwloc.Object: OS_Device [Net "hsn3"]
...

39

Eg. GPU Node Topology
Hwloc.Object: Machine
└─ Hwloc.Object: Package [L#0 P#0]
 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn0"]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "nmn0"]
...

 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn1"]
...

 ├─ Hwloc.Object: Group
 │ ├─ Hwloc.Object: NUMANode
 │ └─ Hwloc.Object: Bridge [HostBridge]
 │ ├─ Hwloc.Object: Bridge [PCIBridge]
 │ │ └─ Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
 │ │ └─ Hwloc.Object: OS_Device [Net "hsn2"]
...

 └─ Hwloc.Object: Group
 ├─ Hwloc.Object: NUMANode
 └─ Hwloc.Object: Bridge [HostBridge]
 ├─ Hwloc.Object: Bridge [PCIBridge]
 │ └─ Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
 │ └─ Hwloc.Object: OS_Device [Net "hsn3"]
...

40

Topo distance to NIC

• Finding the right NIC is
easy now: pick the
(non-nmn) interface with
lowest tree distance
between your core and
the PCI device

213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn0"]
213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "nmn0"]
47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn1"]
379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn2"]
379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn3"]

41

Topo distance to NIC

• Finding the right NIC is
easy now: pick the
(non-nmn) interface with
lowest tree distance
between your core and
the PCI device

213: Hwloc.Object: PCI_Device [c2:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn0"]
213: Hwloc.Object: PCI_Device [c3:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "nmn0"]
47: Hwloc.Object: PCI_Device [81:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn1"]
379: Hwloc.Object: PCI_Device [42:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn2"]
379: Hwloc.Object: PCI_Device [01:00.0 (Ethernet)]
└─ Hwloc.Object: OS_Device [Net "hsn3"]

This one!

42

Future

• This is pre-alpha, so far only deployed at NERSC
o Looking for folks to test this at NERSC and on their favorite HPC

systems

• Distributed.jl to use distance between NIC and
Core (on Hwloc tree) to select preferred tree NIC
o JuliaParallel/NetworkInterfaceControllers.jl

https://github.com/JuliaParallel/NetworkInterfaceControllers.jl

Programming GPUs

8

44

CUDA.jl: Interfacing with Nvidia GPUs

45

CUDA.jl: Interfacing with Nvidia GPUs

Basic example:
1000x1000 matmul
using OpenBLAS

46

CUDA.jl: Interfacing with Nvidia GPUs

Copy arrays to device

47

CUDA.jl: Interfacing with Nvidia GPUs

Using cuBLAS to
perform matmul
decreases run time from
3.15ms to 121μs (26x)

48

Write Your Own CUDA Kernels in Julia

49

Write Your Own CUDA Kernels in Julia

Define kernels using
Julia functions

50

Write Your Own CUDA Kernels in Julia

Launch kernel using the
@cuda macro

51

CUDA.jl provides detailed profiling interface

52

(advanced) LLVM + Julia

Julia provides
interfaces to the
LLVM backend.

Eg.:
● loopinfo
● llvmcall

Inspiration: Particles in Potentials

10

54

Transition Rates between Potential Minima

55

Transition Rates between Potential Minima

This is a
highly-simplified (1D)
model for loads of
interesting science:
chemical reactions;
protein conformations;
etc

56

Integrating SDEs

57

Integrating SDEs

Julia makes RNG easy!

58

Integrating SDEs

Define SDE algorithm

59

Integrating SDEs

SDE algorithms can be
long and complex!

60

Transitions are Rare!

61

Transitions are Rare!

Often you will 100s of
millions of data points in
order to collect a few
thousand transitions

62

Solution Strategy: Local Monte-Carlo Sampling

63

Solution Strategy: Local Monte-Carlo Sampling

64

Solution Strategy: Local Monte-Carlo Sampling

For every time step, run a
short simulation with
slightly different starting
conditions

65

Solution Strategy: Local Monte-Carlo Sampling

Borderline state

Stable state

66

Solution Strategy: Adaptive Algorithms

67

Solution Strategy: Adaptive Algorithms

68

Start Mapping a Phase Space

69

Start Mapping a Phase Space

Machine learning using Flux.jl

15

71

Flux.jl Automatically Detects CUDA.jl

72

Flux.jl Automatically Detects CUDA.jl

Julia introspection is a
powerful tool to detect /
confirm system
configuration At NERSC Julia is

configured to
automatically detect the
system’s CUDA runtime

73

Define Input Data

74

Define Input Data

Classify point in phase
space based on local MC
sample’s spread rate
(~Lyapunov rate)

75

Define a (simple) Neural Network Model

Chain conveniently chains
together layers. Ingests a
2D (position, velocity)
vector, outputs 3D class
probability vector

76

Use |> gpu and |> cpu to Move Data

Column-major inputs.
Model outputs the
likelihoods (columns) of
each class

77

Train the Model

78

Train the Model

|> gpu also works with
complex data types
(tuples, vectors, structs,
tuples of structs, …)

79

Train the Model

Flux.train!(model,
loader, optim)
does all of this

80

We’ve Finished Building our AI Classifier

81

We’ve Finished Building our AI Classifier

82

ML Model Infers

83

Using Dagger.jl To parallelize your
workflow

20

85

Dagger.jl: Easy work distribution

86

Dagger.jl: Easy work distribution

87

Dagger.jl: Easy work distribution

88

Dagger.jl: Easy work distribution

For references: openBLAS
(single node) = 3.15ms,
cuBLAS = 121μs

89

Dagger Provides Async Task Spawning

90

Dagger Provides Async Task Spawning

Tasks start immediately.
Spawning is non-blocking.
This is called EagerThunk

91

Dagger Provides Async Task Spawning

Functions to be used by
@spawn need to be defined
with @everywhere

Track where the function runs

92

Use Loop to Submit Tasks to Workers

93

Use Loop to Submit Tasks to Workers

@spawn is non-blocking,
fetch or using a variable
are blocking

94

Where Did All The Tasks Run?

95

Where Did All The Tasks Run?

All the tasks are distributed
over the Distributed.jl
processors

96

Time to Accelerate the MC Sampler

Serial version:
1. Simulate N steps
2. Simulate ensemble.n

independent trajectories
3. Aggregate data

97

Time to Accelerate the MC Sampler

Naive parallelization:
1. Simulate N steps
2. Spawn ensemble.n

independent trajectory
simulation tasks

3. Fetch data

98

There is No Free Lunch

99

There is No Free Lunch

100

There is No Free Lunch

You’re not keeping workers
busy enough to amortize
@spawn costs (+too much
data movement)

101

Keep Workers Busy Enough

Unit of work: simulate several
trajectories (or make each trajectory
longer).

Don’t transfer data unnecessarily:
We’re only interested in how much
trajectories spread out

102

Keep Workers Busy Enough

Improved parallelization:

1. Simulate N steps
2. Spawn batches of

trajectory simulation
tasks

3. Fetch only needed
data

103

Busy Workers Amortize Overhead

Also note: you can scale to
many nodes

Conclusions

25

105

Conclusion

● Julia provides a rich ecosystem to build performant
distributed applications on HPC systems
○ Saw examples of Jupyter (IJulia.jl); Beginnings of

sophisticated multi-node workflows (Distributed.jl,
Dagger.jl); Programming GPUs (CUDA.jl); and AI (Flux.jl)

● Modern high-productivity design
● HPC vendor aware. Built on top of LLVM, with vendor

backends (CUDA.jl, AMDGPU.jl, oneAPI.jl, etc)
● Provides interfaces to examine and manipulate what

you’re doing (including LLVM IR)

106

Noteworthy Julia Packages (for HPC)

• JuliaIO: https://github.com/JuliaIO
JuliaData: https://github.com/JuliaData
Collects many Julia packages around I/O and Data

• JuliaParallel: https://github.com/JuliaParallel
Collects many Julia packages around distributed and
parallel computing

• JuliaGPU: https://github.com/JuliaGPU
Collects many Julia packages used for GPU computing

https://github.com/JuliaIO
https://github.com/JuliaData
https://github.com/JuliaParallel
https://github.com/JuliaGPU

107

Noteworthy I/O Packages

• Pidfile.jl: Provides the linux/unix pidfile mechanism to
hold mutex’es – useful for locking files

• HDF5.jl: HDF5-file support
• Zarr.jl: Julia Zarr (N-D array compressed data) support
• JLD.jl / JLD2.jl: Julia-native serialization support
• Tables.jl / DTables.jl / DistributedArrays.jl: arrays and

tables build on distributed / CSV.jl: Tabular data support

• JuliaDB.jl: A distributed database for tables (implemented
in pure Julia)

108

Noteworthy REST and Web Frameworks

• HTTP.jl: Send and receive HTTP requests
• Mux.jl / Oxygen.jl: Routing middleware for HTTP

requests – Oxygen is newer and makes multithreading
easier (considered an all-Julia replacement for FastAPI)

• Genie.jl: Fully-fledged web development framework
(Julia’s answer to Flask)

109

Noteworthy HPC Packages

“Traditional” HPC support:
(https://github.com/JuliaParallel)
• MPI.jl: no explanation needed (it is CUDA/ROCM-aware)
• ClusterManagers.jl: manager HPC resources on the fly

(also note SlurmClusterManager.jl and
MPIClusterManagers.jl for HPC clusters)

• ImplicitGlobalGrid.jl / MPIArrays.jl: implement a global
address space (using the Array interface) built on MPI.jl

https://github.com/JuliaParallel

110

Noteworthy HPC Packages

Tasking (producer-consumer) style HPC support:
(https://github.com/JuliaParallel)
• Distributed.jl / Dagger.jl: task-based parallelism (like

Dask and Ray)
• DTables.jl / DistributedArrays.jl: arrays and tables build

on distributed

ML support: Flux.jl (like pytorch, but different)

https://github.com/JuliaParallel

111

Noteworthy HPC Packages

GPU Support:
(https://github.com/JuliaGPU)
• CUDA.jl / AMDGPU.jl / oneAPI.jl: low-level GPU support

(expose GPU Array interface + helper functions to
manage GPU resources)

• KernelAbstractions.jl: lets you write portable code by
writing portable kernels (a bit “like” Kokkos)

• + Many Many more

https://github.com/JuliaGPU

Extra Slides

113

AMD "Milan" CPU Node
2x CPUs

> 256 GiB DDR4
1x 200G "Slingshot" NIC

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU

40 GiB HBM + 256 GiB DDR
4x 200G "Slingshot" NICs

Perlmutter system configuration

Compute racks
64 blades

Blades
2x GPU nodes or

4x CPU nodes

Centers of
Excellence
Network
Storage

App. Readiness
System SW

Perlmutter system
GPU racks
CPU racks

~6 MW

114

CUDA.jl provides detailed profiling interface

115

CUDA.jl is compatible with Structs

116

CUDA.jl is compatible with Structs

Julia converts struct to
cuda-compatible type

117

Why does NERSC care about Julia?

119

NERSC is the mission HPC and data facility for the
U.S Department of Energy Office of Science

>2,000
Scientific Journal Articles per Year

120

NERSC is the mission HPC and data facility for the
U.S Department of Energy Office of Science

>2,000
Scientific Journal Articles per Year

• Most users at NERSC are not HPC experts
o and we can’t force them to become ones

• Workflows running at NERSC are incredibly varied
o in response, NERSC systems provide a range of capabilities

• => Julia needs to “know what to do” by default
o Need: intelligent, easy to support, and robust interface with HPC

resources

